{"title":"Maternal vitamin D regulates the metabolic rearrangement of offspring CD4<sup>+</sup> T cells in response to intestinal inflammation.","authors":"Binjun Zhu, Jingwei Yang, Ruiling Fan, Haiyang Song, Lanlan Zhong, Tianli Zeng, Runmin Long, Xing Wan, Qingxi Li, Lei Liu, Jiang Xie","doi":"10.1016/j.celrep.2025.115857","DOIUrl":null,"url":null,"abstract":"<p><p>Children with autism spectrum disorders often have increased susceptibility to intestinal inflammation. However, the mechanisms and prevention of gastrointestinal immune dysfunction remain unclear. We demonstrate that maternal high vitamin D (VitD) level can rescue abnormal intestinal immune phenotypes in offspring that exhibit autism-like phenotypes due to exposure to maternal inflammation. Offspring exposed to dual insult of maternal inflammation and VitD deprivation show increased susceptibility to intestinal inflammation. Maternal high VitD level altered the metabolic patterns and chromatin accessibility of offspring CD4<sup>+</sup> T cells and rescued the abnormal immune state of offspring induced by maternal immune activation (MIA). Additionally, MIA has long-term impacts on the immune phenotype of offspring in the second litter. Our findings suggest why exposure in utero to high inflammation and low maternal VitD levels increase the risk of inflammatory diseases in offspring.</p>","PeriodicalId":9798,"journal":{"name":"Cell reports","volume":"44 6","pages":"115857"},"PeriodicalIF":7.5000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.celrep.2025.115857","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Children with autism spectrum disorders often have increased susceptibility to intestinal inflammation. However, the mechanisms and prevention of gastrointestinal immune dysfunction remain unclear. We demonstrate that maternal high vitamin D (VitD) level can rescue abnormal intestinal immune phenotypes in offspring that exhibit autism-like phenotypes due to exposure to maternal inflammation. Offspring exposed to dual insult of maternal inflammation and VitD deprivation show increased susceptibility to intestinal inflammation. Maternal high VitD level altered the metabolic patterns and chromatin accessibility of offspring CD4+ T cells and rescued the abnormal immune state of offspring induced by maternal immune activation (MIA). Additionally, MIA has long-term impacts on the immune phenotype of offspring in the second litter. Our findings suggest why exposure in utero to high inflammation and low maternal VitD levels increase the risk of inflammatory diseases in offspring.
期刊介绍:
Cell Reports publishes high-quality research across the life sciences and focuses on new biological insight as its primary criterion for publication. The journal offers three primary article types: Reports, which are shorter single-point articles, research articles, which are longer and provide deeper mechanistic insights, and resources, which highlight significant technical advances or major informational datasets that contribute to biological advances. Reviews covering recent literature in emerging and active fields are also accepted.
The Cell Reports Portfolio includes gold open-access journals that cover life, medical, and physical sciences, and its mission is to make cutting-edge research and methodologies available to a wide readership.
The journal's professional in-house editors work closely with authors, reviewers, and the scientific advisory board, which consists of current and future leaders in their respective fields. The advisory board guides the scope, content, and quality of the journal, but editorial decisions are independently made by the in-house scientific editors of Cell Reports.