Rahul S, Amal George, Suresh Babu R, Dhayal Raj A*, Jayakumar G and Adarsh Rag S*,
{"title":"Unraveling the Photocatalytic Performance of La2O3 Nanoparticles for the Degradation of Six Organic Dyes","authors":"Rahul S, Amal George, Suresh Babu R, Dhayal Raj A*, Jayakumar G and Adarsh Rag S*, ","doi":"10.1021/acs.langmuir.5c01655","DOIUrl":null,"url":null,"abstract":"<p >Lanthanum oxide (La<sub>2</sub>O<sub>3</sub>) nanoparticles stand out as promising photocatalysts due to their remarkable stability and photocatalytic properties. In this study, La<sub>2</sub>O<sub>3</sub> nanoparticles were synthesized via a hydrothermal method and explored how varying calcination time (3 and 5 h) influences their structural, morphological, optical, and catalytic properties. X-ray diffraction (XRD) confirmed stable hexagonal structure, with crystallite sizes increasing from 32.79 to 45.49 nm, while UV–vis absorption studies revealed that increasing calcination time led to a gradual decrease in bandgap energy from 4.6 to 4.4 eV, making the material more effective at utilizing light for pollutant degradation. When tested against a range of organic dyes, La<sub>2</sub>O<sub>3</sub> nanoparticles calcinated for 5 h exhibited the highest degradation efficiencies, due to their improved crystallinity and enhanced charge carrier movement. The photocatalytic process followed first-order kinetics, and recyclability tests showed that the nanoparticles retained their efficiency over multiple cycles. Radical scavenger tests confirmed that hydroxyl radicals (<sup>•</sup>OH) and superoxide radicals (<sup>•</sup>O<sub>2</sub><sup>–</sup>) were the dominant reactive species involved in dye degradation, affirming the key mechanism behind the observed photocatalytic performance. These results highlight how fine-tuning calcination time can significantly enhance La<sub>2</sub>O<sub>3</sub>’s potential, making it an eco-friendly solution for wastewater treatment.</p>","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"41 25","pages":"16378–16390"},"PeriodicalIF":3.9000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12224296/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.langmuir.5c01655","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Lanthanum oxide (La2O3) nanoparticles stand out as promising photocatalysts due to their remarkable stability and photocatalytic properties. In this study, La2O3 nanoparticles were synthesized via a hydrothermal method and explored how varying calcination time (3 and 5 h) influences their structural, morphological, optical, and catalytic properties. X-ray diffraction (XRD) confirmed stable hexagonal structure, with crystallite sizes increasing from 32.79 to 45.49 nm, while UV–vis absorption studies revealed that increasing calcination time led to a gradual decrease in bandgap energy from 4.6 to 4.4 eV, making the material more effective at utilizing light for pollutant degradation. When tested against a range of organic dyes, La2O3 nanoparticles calcinated for 5 h exhibited the highest degradation efficiencies, due to their improved crystallinity and enhanced charge carrier movement. The photocatalytic process followed first-order kinetics, and recyclability tests showed that the nanoparticles retained their efficiency over multiple cycles. Radical scavenger tests confirmed that hydroxyl radicals (•OH) and superoxide radicals (•O2–) were the dominant reactive species involved in dye degradation, affirming the key mechanism behind the observed photocatalytic performance. These results highlight how fine-tuning calcination time can significantly enhance La2O3’s potential, making it an eco-friendly solution for wastewater treatment.
期刊介绍:
Langmuir is an interdisciplinary journal publishing articles in the following subject categories:
Colloids: surfactants and self-assembly, dispersions, emulsions, foams
Interfaces: adsorption, reactions, films, forces
Biological Interfaces: biocolloids, biomolecular and biomimetic materials
Materials: nano- and mesostructured materials, polymers, gels, liquid crystals
Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry
Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals
However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do?
Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*.
This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).