Computing True Parameter Values in Simulation Studies Using Monte Carlo Integration.

IF 4.7 2区 医学 Q1 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH
Ashley I Naimi, David Benkeser, Jacqueline E Rudolph
{"title":"Computing True Parameter Values in Simulation Studies Using Monte Carlo Integration.","authors":"Ashley I Naimi, David Benkeser, Jacqueline E Rudolph","doi":"10.1097/EDE.0000000000001873","DOIUrl":null,"url":null,"abstract":"<p><p>Simulation studies are used to evaluate and compare the properties of statistical methods in controlled experimental settings. In most cases, performing a simulation study requires knowledge of the true value of the parameter, or estimand, of interest. However, in many simulation designs, the true value of the estimand is difficult to compute analytically. Here, we illustrate the use of Monte Carlo integration to compute true estimand values in simple and more complex simulation designs. We provide general pseudocode that can be replicated in any software program of choice to demonstrate key principles in using Monte Carlo integration in two scenarios: a simple three-variable simulation where interest lies in the marginally adjusted odds ratio and a more complex causal mediation analysis where interest lies in the controlled direct effect in the presence of mediator-outcome confounders affected by the exposure. We discuss general strategies that can be used to minimize Monte Carlo error and to serve as checks on the simulation program to avoid coding errors. R programming code is provided illustrating the application of our pseudocode in these settings.</p>","PeriodicalId":11779,"journal":{"name":"Epidemiology","volume":" ","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epidemiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/EDE.0000000000001873","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

Abstract

Simulation studies are used to evaluate and compare the properties of statistical methods in controlled experimental settings. In most cases, performing a simulation study requires knowledge of the true value of the parameter, or estimand, of interest. However, in many simulation designs, the true value of the estimand is difficult to compute analytically. Here, we illustrate the use of Monte Carlo integration to compute true estimand values in simple and more complex simulation designs. We provide general pseudocode that can be replicated in any software program of choice to demonstrate key principles in using Monte Carlo integration in two scenarios: a simple three-variable simulation where interest lies in the marginally adjusted odds ratio and a more complex causal mediation analysis where interest lies in the controlled direct effect in the presence of mediator-outcome confounders affected by the exposure. We discuss general strategies that can be used to minimize Monte Carlo error and to serve as checks on the simulation program to avoid coding errors. R programming code is provided illustrating the application of our pseudocode in these settings.

用蒙特卡罗积分计算仿真研究中的真参数值。
模拟研究用于评估和比较统计方法在受控实验环境中的特性。在大多数情况下,执行模拟研究需要了解感兴趣的参数或估计的真实值。然而,在许多仿真设计中,估计的真实值难以解析计算。在这里,我们说明了在简单和更复杂的仿真设计中使用蒙特卡罗积分来计算真估计值。我们提供了可以在任何选择的软件程序中复制的通用伪代码,以演示在两种情况下使用蒙特卡罗积分的关键原则:一个简单的三变量模拟,其中感兴趣的是边际调整的比值比,一个更复杂的因果中介分析,其中感兴趣的是受暴露影响的中介结果混杂因素存在的受控直接效应。我们讨论了可用于最小化蒙特卡罗误差的一般策略,并作为对模拟程序的检查以避免编码错误。提供了R编程代码来说明我们的伪代码在这些设置中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Epidemiology
Epidemiology 医学-公共卫生、环境卫生与职业卫生
CiteScore
6.70
自引率
3.70%
发文量
177
审稿时长
6-12 weeks
期刊介绍: Epidemiology publishes original research from all fields of epidemiology. The journal also welcomes review articles and meta-analyses, novel hypotheses, descriptions and applications of new methods, and discussions of research theory or public health policy. We give special consideration to papers from developing countries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信