{"title":"Effect of Distribution of Substitution on Marine Biodegradability for Paramylon Acetate and Cellulose Acetate.","authors":"Ruiqi Li, Jin Ho Seok, Tadahisa Iwata","doi":"10.1021/acs.biomac.5c00252","DOIUrl":null,"url":null,"abstract":"<p><p>Paramylon acetate and cellulose acetate with different degrees and distributions of substituents were synthesized by two different methods, de-esterification from triesters with NaOH treatment and direct esterification. Paramylon and cellulose acetate obtained by de-esterification exhibited a lower degree of substitution (DS) at C6 and a higher DS at C2 position. All of the acetate samples with different DSs were thermoformable, producing transparent films. However, melt-pressed films obtained through de-esterification exhibited greater flexibility than those prepared via direct esterification. Simultaneously, biochemical oxygen demand (BOD) tests demonstrated that paramylon and cellulose acetate obtained by de-esterification show higher biodegradability than esterification ones with the same DS. This increased biodegradability may be attributed to the lower DS of the acetyl group on C6 for paramylon and cellulose acetate obtained by de-esterification. De-esterification with NaOH treatment was validated as an effective approach for producing polysaccharide esters with excellent mechanical properties and biodegradability for both paramylon and cellulose.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.biomac.5c00252","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Paramylon acetate and cellulose acetate with different degrees and distributions of substituents were synthesized by two different methods, de-esterification from triesters with NaOH treatment and direct esterification. Paramylon and cellulose acetate obtained by de-esterification exhibited a lower degree of substitution (DS) at C6 and a higher DS at C2 position. All of the acetate samples with different DSs were thermoformable, producing transparent films. However, melt-pressed films obtained through de-esterification exhibited greater flexibility than those prepared via direct esterification. Simultaneously, biochemical oxygen demand (BOD) tests demonstrated that paramylon and cellulose acetate obtained by de-esterification show higher biodegradability than esterification ones with the same DS. This increased biodegradability may be attributed to the lower DS of the acetyl group on C6 for paramylon and cellulose acetate obtained by de-esterification. De-esterification with NaOH treatment was validated as an effective approach for producing polysaccharide esters with excellent mechanical properties and biodegradability for both paramylon and cellulose.
期刊介绍:
Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine.
Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.