{"title":"LncRNAs IFNG-AS1 and TH2LCRR as potential biomarkers of Th1/Th2 imbalance in diabetic nephropathy: From bioinformatics to experimental validation","authors":"Seyed Amir Hossein Hosseini , Parisa Ajorlou , Maryam Salehian , Aghdas Dehghani","doi":"10.1016/j.bbrep.2025.102093","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>The inflammatory response is a pivotal mechanism underlying the progression of type 2 diabetes mellitus (T2DM) into diabetic nephropathy (DN). Upstream lncRNAs regulate inflammatory molecules, and their dysregulation can disrupt immune homeostasis. Th1/Th2 imbalance is one of the most significant causes of DN progression. This research aims to uncover novel biomarkers and elucidate the underlying molecular mechanisms involved in DN.</div></div><div><h3>Methods</h3><div>The GSE135390 dataset was analyzed to identify differentially expressed genes (DEGs) associated with Th1 cell differentiation. Based on literature review and NcPath databases, IFNG-AS1(Th1) and TH2LCRR (Th2) were selected as the top lncRNAs. To validate our bioinformatics findings, real-time PCR was conducted on 90 participants categorized into four groups: 30 with T2DM, 30 with DN (15 with microalbuminuria and 15 with ESRD), and 30 healthy controls.</div></div><div><h3>Results</h3><div>The analysis of real-time PCR results revealed a notable upregulation in IFNG-AS1 expression in ESRD patients compared to individuals with T2DM and healthy controls. Moreover, a significant increase in IFNG-AS1 expression was observed in patients with microalbuminuria relative to healthy subjects. Conversely, TH2LCRR expression was notably reduced in patients with ESRD, microalbuminuria, and T2DM compared to healthy individuals. Expression of IFNG-AS1 and TH2LCRR showed strong correlation with biochemical markers, including HbA1c, ESR, BUN, GFR, and albumin.</div></div><div><h3>Conclusion</h3><div>This study demonstrates the potential role of IFNG-AS1 and TH2LCRR as key regulators in the immunopathogenesis of DN. Their dysregulated expression may contribute to Th1/Th2 imbalance, providing a deeper understanding of immune-mediated mechanisms involved in DN progression.</div></div>","PeriodicalId":8771,"journal":{"name":"Biochemistry and Biophysics Reports","volume":"43 ","pages":"Article 102093"},"PeriodicalIF":2.2000,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry and Biophysics Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405580825001803","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
The inflammatory response is a pivotal mechanism underlying the progression of type 2 diabetes mellitus (T2DM) into diabetic nephropathy (DN). Upstream lncRNAs regulate inflammatory molecules, and their dysregulation can disrupt immune homeostasis. Th1/Th2 imbalance is one of the most significant causes of DN progression. This research aims to uncover novel biomarkers and elucidate the underlying molecular mechanisms involved in DN.
Methods
The GSE135390 dataset was analyzed to identify differentially expressed genes (DEGs) associated with Th1 cell differentiation. Based on literature review and NcPath databases, IFNG-AS1(Th1) and TH2LCRR (Th2) were selected as the top lncRNAs. To validate our bioinformatics findings, real-time PCR was conducted on 90 participants categorized into four groups: 30 with T2DM, 30 with DN (15 with microalbuminuria and 15 with ESRD), and 30 healthy controls.
Results
The analysis of real-time PCR results revealed a notable upregulation in IFNG-AS1 expression in ESRD patients compared to individuals with T2DM and healthy controls. Moreover, a significant increase in IFNG-AS1 expression was observed in patients with microalbuminuria relative to healthy subjects. Conversely, TH2LCRR expression was notably reduced in patients with ESRD, microalbuminuria, and T2DM compared to healthy individuals. Expression of IFNG-AS1 and TH2LCRR showed strong correlation with biochemical markers, including HbA1c, ESR, BUN, GFR, and albumin.
Conclusion
This study demonstrates the potential role of IFNG-AS1 and TH2LCRR as key regulators in the immunopathogenesis of DN. Their dysregulated expression may contribute to Th1/Th2 imbalance, providing a deeper understanding of immune-mediated mechanisms involved in DN progression.
期刊介绍:
Open access, online only, peer-reviewed international journal in the Life Sciences, established in 2014 Biochemistry and Biophysics Reports (BB Reports) publishes original research in all aspects of Biochemistry, Biophysics and related areas like Molecular and Cell Biology. BB Reports welcomes solid though more preliminary, descriptive and small scale results if they have the potential to stimulate and/or contribute to future research, leading to new insights or hypothesis. Primary criteria for acceptance is that the work is original, scientifically and technically sound and provides valuable knowledge to life sciences research. We strongly believe all results deserve to be published and documented for the advancement of science. BB Reports specifically appreciates receiving reports on: Negative results, Replication studies, Reanalysis of previous datasets.