Energy evolution and distribution patterns of sandstone and its microscopic mechanism under multistage cyclic loading

IF 3.7 2区 工程技术 Q3 ENERGY & FUELS
Hongying Tan , Hejuan Liu , Chunhe Yang , Haijun Mao , Yujia Song , Debin Xia , Shengnan Ban , Weimin Wang
{"title":"Energy evolution and distribution patterns of sandstone and its microscopic mechanism under multistage cyclic loading","authors":"Hongying Tan ,&nbsp;Hejuan Liu ,&nbsp;Chunhe Yang ,&nbsp;Haijun Mao ,&nbsp;Yujia Song ,&nbsp;Debin Xia ,&nbsp;Shengnan Ban ,&nbsp;Weimin Wang","doi":"10.1016/j.gete.2025.100694","DOIUrl":null,"url":null,"abstract":"<div><div>Sandstone, as a fundamental engineering material in depleted oil and gas reservoir gas storage systems, is susceptible to damage and failure under periodic stress disturbances. In this study, multi-level multi-cyclic loading tests were carried out on sandstone samples over the confining pressures range of 5–40 MPa, accompanied by real-time acoustic emission (AE) monitoring and periodic nuclear magnetic resonance (NMR) measurements. This study investigats the effects of confining pressure, stress level, and the number of cycles on energy evolution and energy distribution in rock, revealing the micromechanisms of energy evolution during cyclic loading. The results indicate that during the first cyclic loading, the input energy is primarily converted into dissipated energy through the compression of small pores and some medium pores. In subsequent loading cycles, the input energy is primarily converted into dissipated energy through the initiation and propagation of internal microcracks. Under high confining pressure, the rock transitions from brittle to ductile behavior, enabling it to withstand greater deformation. Additionally, at high confining pressure, rocks accumulate more strain energy, while energy dissipation is higher compared to lower confining pressures. Throughout the cyclic loading, dissipated energy consistently accounts for less than 30 % of the total input energy across all stress levels. The linear energy storage coefficient remains independence from stress level and cycle number, but exhibits an inverse relationship with confining pressure. There is an obvious linear relationship between rock dissipation energy and AE energy. Higher AE energy indicate that the rock dissipates more strain energy.</div></div>","PeriodicalId":56008,"journal":{"name":"Geomechanics for Energy and the Environment","volume":"43 ","pages":"Article 100694"},"PeriodicalIF":3.7000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomechanics for Energy and the Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352380825000590","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Sandstone, as a fundamental engineering material in depleted oil and gas reservoir gas storage systems, is susceptible to damage and failure under periodic stress disturbances. In this study, multi-level multi-cyclic loading tests were carried out on sandstone samples over the confining pressures range of 5–40 MPa, accompanied by real-time acoustic emission (AE) monitoring and periodic nuclear magnetic resonance (NMR) measurements. This study investigats the effects of confining pressure, stress level, and the number of cycles on energy evolution and energy distribution in rock, revealing the micromechanisms of energy evolution during cyclic loading. The results indicate that during the first cyclic loading, the input energy is primarily converted into dissipated energy through the compression of small pores and some medium pores. In subsequent loading cycles, the input energy is primarily converted into dissipated energy through the initiation and propagation of internal microcracks. Under high confining pressure, the rock transitions from brittle to ductile behavior, enabling it to withstand greater deformation. Additionally, at high confining pressure, rocks accumulate more strain energy, while energy dissipation is higher compared to lower confining pressures. Throughout the cyclic loading, dissipated energy consistently accounts for less than 30 % of the total input energy across all stress levels. The linear energy storage coefficient remains independence from stress level and cycle number, but exhibits an inverse relationship with confining pressure. There is an obvious linear relationship between rock dissipation energy and AE energy. Higher AE energy indicate that the rock dissipates more strain energy.
多级循环加载下砂岩能量演化分布规律及微观机制
砂岩作为衰竭油气藏储气系统的基础工程材料,在周期性应力扰动下易发生破坏。在5 ~ 40 MPa围压范围内,对砂岩试样进行了多级多循环加载试验,并进行了实时声发射(AE)监测和周期性核磁共振(NMR)测量。研究了围压、应力水平和循环次数对岩石能量演化和能量分布的影响,揭示了循环加载过程中能量演化的微观机制。结果表明:在第一次循环加载过程中,输入能量主要通过压缩小孔隙和部分中等孔隙转化为耗散能量;在随后的加载循环中,输入能量主要通过内部微裂纹的萌生和扩展转化为耗散能量。在高围压下,岩石从脆性转变为延性,使其能够承受更大的变形。高围压条件下,岩石积累的应变能更多,能量耗散也比低围压条件下大。在整个循环加载过程中,耗散能量始终占所有应力水平下总输入能量的30% %以下。线性蓄能系数与应力水平和循环次数无关,与围压呈反比关系。岩石耗散能与声发射能之间存在明显的线性关系。声发射能越高,说明岩石耗散的应变能越大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geomechanics for Energy and the Environment
Geomechanics for Energy and the Environment Earth and Planetary Sciences-Geotechnical Engineering and Engineering Geology
CiteScore
5.90
自引率
11.80%
发文量
87
期刊介绍: The aim of the Journal is to publish research results of the highest quality and of lasting importance on the subject of geomechanics, with the focus on applications to geological energy production and storage, and the interaction of soils and rocks with the natural and engineered environment. Special attention is given to concepts and developments of new energy geotechnologies that comprise intrinsic mechanisms protecting the environment against a potential engineering induced damage, hence warranting sustainable usage of energy resources. The scope of the journal is broad, including fundamental concepts in geomechanics and mechanics of porous media, the experiments and analysis of novel phenomena and applications. Of special interest are issues resulting from coupling of particular physics, chemistry and biology of external forcings, as well as of pore fluid/gas and minerals to the solid mechanics of the medium skeleton and pore fluid mechanics. The multi-scale and inter-scale interactions between the phenomena and the behavior representations are also of particular interest. Contributions to general theoretical approach to these issues, but of potential reference to geomechanics in its context of energy and the environment are also most welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信