In-situ experimental study on the microstructure evolution of AlN-Cu composite during microwave sintering

IF 3.9 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Xiao Wang, Yu Xiao, Yuan Ren, Liangyuan Wang, Xiaofang Hu, Feng Xu
{"title":"In-situ experimental study on the microstructure evolution of AlN-Cu composite during microwave sintering","authors":"Xiao Wang,&nbsp;Yu Xiao,&nbsp;Yuan Ren,&nbsp;Liangyuan Wang,&nbsp;Xiaofang Hu,&nbsp;Feng Xu","doi":"10.1016/j.mseb.2025.118519","DOIUrl":null,"url":null,"abstract":"<div><div>Due to its combination of high thermal conductivity and electrical conductivity, the AlN-Cu composite material exhibits enormous application potential in the field of electronic packaging. Its interfacial properties directly determine the reliability of devices. In this study, microwave sintering and a rapid SR-CT in-situ device were used to real-timely observe the entire process of microstructural evolution in AlN-Cu materials. The research found that microwave sintering can achieve bonding at 600℃ within 6 min to form an intermediate phase of CuAlO<sub>2</sub>; The initial volume of copper particles regulates the reaction rate by influencing the effective microwave volume. The difference in dielectric constant between AlN and Cu triggers interfacial polarization, reconstructs the microwave energy distribution, and accelerates the reaction. When the radius ratio of Cu to AlN particles is close to 1, the actual microwave heating efficiency is the highest; there exists an optimal radius ratio (R<sub>Cu</sub>:R<sub>AlN</sub> = 1) that maximizes the actual thermal power, balancing electric field enhancement and effective volume attenuation. This study provides a fundamental reference for designing the particle size of AlN-Cu composite materials and optimizing the microwave sintering process.</div></div>","PeriodicalId":18233,"journal":{"name":"Materials Science and Engineering: B","volume":"321 ","pages":"Article 118519"},"PeriodicalIF":3.9000,"publicationDate":"2025-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: B","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921510725005434","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Due to its combination of high thermal conductivity and electrical conductivity, the AlN-Cu composite material exhibits enormous application potential in the field of electronic packaging. Its interfacial properties directly determine the reliability of devices. In this study, microwave sintering and a rapid SR-CT in-situ device were used to real-timely observe the entire process of microstructural evolution in AlN-Cu materials. The research found that microwave sintering can achieve bonding at 600℃ within 6 min to form an intermediate phase of CuAlO2; The initial volume of copper particles regulates the reaction rate by influencing the effective microwave volume. The difference in dielectric constant between AlN and Cu triggers interfacial polarization, reconstructs the microwave energy distribution, and accelerates the reaction. When the radius ratio of Cu to AlN particles is close to 1, the actual microwave heating efficiency is the highest; there exists an optimal radius ratio (RCu:RAlN = 1) that maximizes the actual thermal power, balancing electric field enhancement and effective volume attenuation. This study provides a fundamental reference for designing the particle size of AlN-Cu composite materials and optimizing the microwave sintering process.

Abstract Image

微波烧结过程中AlN-Cu复合材料微观组织演变的原位实验研究
由于AlN-Cu复合材料兼具高导热性和高导电性,在电子封装领域显示出巨大的应用潜力。它的接口性能直接决定了设备的可靠性。本研究采用微波烧结和快速SR-CT原位装置,实时观察了AlN-Cu材料微观组织演变的全过程。研究发现,微波烧结可以在600℃下6 min内实现键合,形成CuAlO2的中间相;铜颗粒的初始体积通过影响微波有效体积来调节反应速率。AlN和Cu之间介电常数的差异触发了界面极化,重构了微波能量分布,加速了反应。当Cu与AlN粒子半径比接近1时,实际微波加热效率最高;存在一个最优半径比(RCu:RAlN = 1),使实际热功率最大化,平衡电场增强和有效体积衰减。该研究为设计铝铜复合材料的粒度和优化微波烧结工艺提供了基础参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Science and Engineering: B
Materials Science and Engineering: B 工程技术-材料科学:综合
CiteScore
5.60
自引率
2.80%
发文量
481
审稿时长
3.5 months
期刊介绍: The journal provides an international medium for the publication of theoretical and experimental studies and reviews related to the electronic, electrochemical, ionic, magnetic, optical, and biosensing properties of solid state materials in bulk, thin film and particulate forms. Papers dealing with synthesis, processing, characterization, structure, physical properties and computational aspects of nano-crystalline, crystalline, amorphous and glassy forms of ceramics, semiconductors, layered insertion compounds, low-dimensional compounds and systems, fast-ion conductors, polymers and dielectrics are viewed as suitable for publication. Articles focused on nano-structured aspects of these advanced solid-state materials will also be considered suitable.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信