Green synthesized Se@ZnO nanocomposites using Ficus religiosa extract for enhanced photocatalytic degradation of fast green dye and biological applications

IF 3.9 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
A. Anitha , P. Ponmurugan , S.Esath Natheer , S. Kannan , M. Sathishkumar , D. Arunkumar
{"title":"Green synthesized Se@ZnO nanocomposites using Ficus religiosa extract for enhanced photocatalytic degradation of fast green dye and biological applications","authors":"A. Anitha ,&nbsp;P. Ponmurugan ,&nbsp;S.Esath Natheer ,&nbsp;S. Kannan ,&nbsp;M. Sathishkumar ,&nbsp;D. Arunkumar","doi":"10.1016/j.mseb.2025.118478","DOIUrl":null,"url":null,"abstract":"<div><div>Water pollution by synthetic dyes and pathogens poses severe environmental and health risks. This study offers a green solution by biosynthesizing zinc oxide (ZnO) and selenium-doped ZnO (Se@ZnO) nanoparticles using Ficus religiosa (FR) extract as a reducing and stabilizing agent. Structural and optical analyses (XRD, FTIR, FESEM-EDX, UV–Vis, PL, BET, XPS) confirmed crystalline structures and morphological transformation from nanorods (ZnO) to nanoflakes (FRSe@ZnO). The FRSe@ZnO showed a reduced bandgap (2.70 eV) and increased surface area (121 m<sup>2</sup>/g). Photocatalytic studies revealed that FRSe@ZnO achieved 99 % degradation of fast green dye in 100 min under visible light, outperforming ZnO (79 %) and Se@ZnO (91 %). It also exhibited good recyclability, pH-responsive behavior, and ROS scavenging activity. Moreover, FRSe@ZnO demonstrated significant antimicrobial effects against various pathogens, as well as antidiabetic and anti-inflammatory potential. These findings highlight the promise of green-synthesized, multifunctional nanomaterials for sustainable environmental cleanup and biomedical applications.</div></div>","PeriodicalId":18233,"journal":{"name":"Materials Science and Engineering: B","volume":"321 ","pages":"Article 118478"},"PeriodicalIF":3.9000,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: B","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921510725005021","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Water pollution by synthetic dyes and pathogens poses severe environmental and health risks. This study offers a green solution by biosynthesizing zinc oxide (ZnO) and selenium-doped ZnO (Se@ZnO) nanoparticles using Ficus religiosa (FR) extract as a reducing and stabilizing agent. Structural and optical analyses (XRD, FTIR, FESEM-EDX, UV–Vis, PL, BET, XPS) confirmed crystalline structures and morphological transformation from nanorods (ZnO) to nanoflakes (FRSe@ZnO). The FRSe@ZnO showed a reduced bandgap (2.70 eV) and increased surface area (121 m2/g). Photocatalytic studies revealed that FRSe@ZnO achieved 99 % degradation of fast green dye in 100 min under visible light, outperforming ZnO (79 %) and Se@ZnO (91 %). It also exhibited good recyclability, pH-responsive behavior, and ROS scavenging activity. Moreover, FRSe@ZnO demonstrated significant antimicrobial effects against various pathogens, as well as antidiabetic and anti-inflammatory potential. These findings highlight the promise of green-synthesized, multifunctional nanomaterials for sustainable environmental cleanup and biomedical applications.

Abstract Image

Green利用榕叶提取物合成Se@ZnO纳米复合材料,增强了快速绿色染料的光催化降解和生物应用
由合成染料和病原体造成的水污染构成了严重的环境和健康风险。本研究提出了一种绿色解决方案,即利用榕叶(FR)提取物作为还原剂和稳定剂,生物合成氧化锌(ZnO)和硒掺杂氧化锌(Se@ZnO)纳米颗粒。结构和光学分析(XRD, FTIR, FESEM-EDX, UV-Vis, PL, BET, XPS)证实了晶体结构和从纳米棒(ZnO)到纳米片的形态转变(FRSe@ZnO)。FRSe@ZnO的带隙减小(2.70 eV),比表面积增大(121 m2/g)。光催化研究表明,FRSe@ZnO在可见光下100分钟内对快速绿色染料的降解率达到99%,优于ZnO(79%)和Se@ZnO(91%)。它还具有良好的可回收性、ph响应行为和活性氧清除活性。此外,FRSe@ZnO显示出对各种病原体的显著抗菌作用,以及抗糖尿病和抗炎潜力。这些发现突出了绿色合成的多功能纳米材料在可持续环境清理和生物医学应用方面的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Science and Engineering: B
Materials Science and Engineering: B 工程技术-材料科学:综合
CiteScore
5.60
自引率
2.80%
发文量
481
审稿时长
3.5 months
期刊介绍: The journal provides an international medium for the publication of theoretical and experimental studies and reviews related to the electronic, electrochemical, ionic, magnetic, optical, and biosensing properties of solid state materials in bulk, thin film and particulate forms. Papers dealing with synthesis, processing, characterization, structure, physical properties and computational aspects of nano-crystalline, crystalline, amorphous and glassy forms of ceramics, semiconductors, layered insertion compounds, low-dimensional compounds and systems, fast-ion conductors, polymers and dielectrics are viewed as suitable for publication. Articles focused on nano-structured aspects of these advanced solid-state materials will also be considered suitable.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信