{"title":"An empirical evaluation of rewiring approaches in graph neural networks","authors":"Alessio Micheli, Domenico Tortorella","doi":"10.1016/j.patrec.2025.05.021","DOIUrl":null,"url":null,"abstract":"<div><div>Graph neural networks compute node representations by performing multiple message-passing steps that consist in local aggregations of node features. Having deep models that can leverage longer-range interactions between nodes is hindered by the issues of over-smoothing and over-squashing. In particular, the latter is attributed to the graph topology which guides the message-passing, causing a node representation to become insensitive to information contained at distant nodes. Many graph rewiring methods have been proposed to remedy or mitigate this problem. However, properly evaluating the benefits of these methods is made difficult by the coupling of over-squashing with other issues strictly related to model training, such as vanishing gradients. Therefore, we propose an evaluation setting based on message-passing models that do not require training to compute node and graph representations. We perform a systematic experimental comparison on real-world node and graph classification tasks, showing that rewiring the underlying graph rarely does confer a practical benefit for message-passing.</div></div>","PeriodicalId":54638,"journal":{"name":"Pattern Recognition Letters","volume":"196 ","pages":"Pages 134-141"},"PeriodicalIF":3.9000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167865525002168","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Graph neural networks compute node representations by performing multiple message-passing steps that consist in local aggregations of node features. Having deep models that can leverage longer-range interactions between nodes is hindered by the issues of over-smoothing and over-squashing. In particular, the latter is attributed to the graph topology which guides the message-passing, causing a node representation to become insensitive to information contained at distant nodes. Many graph rewiring methods have been proposed to remedy or mitigate this problem. However, properly evaluating the benefits of these methods is made difficult by the coupling of over-squashing with other issues strictly related to model training, such as vanishing gradients. Therefore, we propose an evaluation setting based on message-passing models that do not require training to compute node and graph representations. We perform a systematic experimental comparison on real-world node and graph classification tasks, showing that rewiring the underlying graph rarely does confer a practical benefit for message-passing.
期刊介绍:
Pattern Recognition Letters aims at rapid publication of concise articles of a broad interest in pattern recognition.
Subject areas include all the current fields of interest represented by the Technical Committees of the International Association of Pattern Recognition, and other developing themes involving learning and recognition.