Bioinspired Chiral Peptide–Phosphonium Salt Catalysis: From Enzymes to Cationic Small-Molecule Enzyme Mimics

IF 17.7 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Siqiang Fang, Zanjiao Liu, Fan Wang, Tianli Wang
{"title":"Bioinspired Chiral Peptide–Phosphonium Salt Catalysis: From Enzymes to Cationic Small-Molecule Enzyme Mimics","authors":"Siqiang Fang, Zanjiao Liu, Fan Wang, Tianli Wang","doi":"10.1021/acs.accounts.5c00257","DOIUrl":null,"url":null,"abstract":"Enzymes exemplify nature’s catalytic mastery through precise stereochemical control and remarkable rate enhancements, yet their synthetic application remains limited by inherent vulnerabilities: thermal instability, narrow substrate tolerance, and complex engineering requirements. These challenges drive our pursuit of modular organocatalysts that emulate enzymatic cooperativity while combining ease of synthesis, versatility, and high tunability, termed “bioinspired organic small-molecule enzymes”.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"44 1","pages":""},"PeriodicalIF":17.7000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.accounts.5c00257","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Enzymes exemplify nature’s catalytic mastery through precise stereochemical control and remarkable rate enhancements, yet their synthetic application remains limited by inherent vulnerabilities: thermal instability, narrow substrate tolerance, and complex engineering requirements. These challenges drive our pursuit of modular organocatalysts that emulate enzymatic cooperativity while combining ease of synthesis, versatility, and high tunability, termed “bioinspired organic small-molecule enzymes”.

Abstract Image

仿生手性肽-磷酸盐催化:从酶到阳离子小分子酶模拟物
酶通过精确的立体化学控制和显著的速率提高,体现了大自然的催化能力,但它们的合成应用仍然受到固有弱点的限制:热不稳定性、底物耐受性窄、复杂的工程要求。这些挑战促使我们追求模块化有机催化剂,模拟酶的协同作用,同时结合易于合成,多功能性和高可调性,被称为“生物启发有机小分子酶”。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信