A Strong and Tough Thermosetting Epoxy Resin for Recyclable High‐Performance Composites

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Dongxu Pei, Peisen Wang, Jie Hao, Yucheng Zi, Ousheng Zhang, Jigang Yang, Jianhua Tang, Jun Hu
{"title":"A Strong and Tough Thermosetting Epoxy Resin for Recyclable High‐Performance Composites","authors":"Dongxu Pei, Peisen Wang, Jie Hao, Yucheng Zi, Ousheng Zhang, Jigang Yang, Jianhua Tang, Jun Hu","doi":"10.1002/anie.202505526","DOIUrl":null,"url":null,"abstract":"Epoxy‐based carbon fiber‐reinforced composites (EP‐CFRCs) are appealing for engineering applications due to their exceptional specific strength and modulus. Nevertheless, the intrinsic brittleness and limited recyclability of highly cross‐linked epoxy matrices pose significant challenges to their sustainable development. Herein, we present an approach combining dynamic ester bonds with semi‐interpenetrating polymer networks (SIPNs) to overcome these challenges. This strategy leverages the crosslinked epoxy network to resist deformation, while hydrogen bonds and entangled SIPNs to facilitate energy dissipation, enhancing both strength and toughness. The resultant epoxy matrix exhibits superior tensile strength of 123 MPa and record‐breaking impact strength of 52.3 kJ m‐2, effectively overcoming the long‐standing trade‐off between strength and toughness in thermosets. This balanced performance renders it a promising matrix for high‐performance EP‐CFRCs, which display a tensile strength of 718 MPa and a bending deflection of 0.59 mm. Moreover, the embedded tertiary amines accelerate transesterification reactions, enabling closed‐loop recycling of EP‐CFRCs in water. The recycled carbon fibers and the degraded matrix can be reused in new composites and adhesives. This work presents a simple yet effective strategy for designing epoxy resin‐based composites that overcome the limitations of traditional matrices and support the development of recyclable advanced materials for diverse industrial applications.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"10 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202505526","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Epoxy‐based carbon fiber‐reinforced composites (EP‐CFRCs) are appealing for engineering applications due to their exceptional specific strength and modulus. Nevertheless, the intrinsic brittleness and limited recyclability of highly cross‐linked epoxy matrices pose significant challenges to their sustainable development. Herein, we present an approach combining dynamic ester bonds with semi‐interpenetrating polymer networks (SIPNs) to overcome these challenges. This strategy leverages the crosslinked epoxy network to resist deformation, while hydrogen bonds and entangled SIPNs to facilitate energy dissipation, enhancing both strength and toughness. The resultant epoxy matrix exhibits superior tensile strength of 123 MPa and record‐breaking impact strength of 52.3 kJ m‐2, effectively overcoming the long‐standing trade‐off between strength and toughness in thermosets. This balanced performance renders it a promising matrix for high‐performance EP‐CFRCs, which display a tensile strength of 718 MPa and a bending deflection of 0.59 mm. Moreover, the embedded tertiary amines accelerate transesterification reactions, enabling closed‐loop recycling of EP‐CFRCs in water. The recycled carbon fibers and the degraded matrix can be reused in new composites and adhesives. This work presents a simple yet effective strategy for designing epoxy resin‐based composites that overcome the limitations of traditional matrices and support the development of recyclable advanced materials for diverse industrial applications.
一种用于可回收高性能复合材料的强韧性热固性环氧树脂
环氧基碳纤维增强复合材料(EP - CFRCs)由于其优异的比强度和模量而在工程应用中具有很大的吸引力。然而,高交联环氧树脂基体固有的脆性和有限的可回收性对其可持续发展构成了重大挑战。在此,我们提出了一种将动态酯键与半互穿聚合物网络(SIPNs)相结合的方法来克服这些挑战。该策略利用交联环氧树脂网络来抵抗变形,同时利用氢键和纠缠的sipn来促进能量耗散,从而提高强度和韧性。合成的环氧树脂基体具有优异的抗拉强度123 MPa和破纪录的52.3 kJ m - 2的冲击强度,有效地克服了热固性材料中长期存在的强度和韧性之间的权衡。这种平衡的性能使其成为高性能EP - CFRCs的有希望的基体,其抗拉强度为718 MPa,弯曲挠度为0.59 mm。此外,嵌入的叔胺加速了酯交换反应,实现了EP - CFRCs在水中的闭环循环。回收的碳纤维和降解的基体可以在新的复合材料和粘合剂中重复使用。这项工作提出了一个简单而有效的策略来设计环氧树脂基复合材料,克服了传统基体的局限性,并支持开发可回收的先进材料,用于各种工业应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信