Optimizing Dementia Diagnosis Through Distance-Correlation Feature Space and Dimensionality Reduction.

IF 6.4
International journal of neural systems Pub Date : 2025-09-01 Epub Date: 2025-06-12 DOI:10.1142/S012906572550042X
Pablo Zubasti, Miguel A Patricio, Antonio Berlanga, Jose M Molina
{"title":"Optimizing Dementia Diagnosis Through Distance-Correlation Feature Space and Dimensionality Reduction.","authors":"Pablo Zubasti, Miguel A Patricio, Antonio Berlanga, Jose M Molina","doi":"10.1142/S012906572550042X","DOIUrl":null,"url":null,"abstract":"<p><p>The reduction of dimensionality in machine learning and artificial intelligence problems constitutes a pivotal element in the simplification of models, significantly enhancing both their performance and execution time. This process enables the generation of results more rapidly while also facilitating the scalability and optimization of systems that rely on such models. Two primary approaches are commonly employed to achieve dimensionality reduction: feature selection-based methods and those grounded in feature extraction. In this paper, we propose a distance-correlation feature space, upon which we define a dimensionality reduction algorithm based on space transformations and graph embeddings. This methodology is applied in the context of dementia diagnosis through learning models, with the overarching objective of optimizing the diagnostic process.</p>","PeriodicalId":94052,"journal":{"name":"International journal of neural systems","volume":" ","pages":"2550042"},"PeriodicalIF":6.4000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of neural systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S012906572550042X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/12 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The reduction of dimensionality in machine learning and artificial intelligence problems constitutes a pivotal element in the simplification of models, significantly enhancing both their performance and execution time. This process enables the generation of results more rapidly while also facilitating the scalability and optimization of systems that rely on such models. Two primary approaches are commonly employed to achieve dimensionality reduction: feature selection-based methods and those grounded in feature extraction. In this paper, we propose a distance-correlation feature space, upon which we define a dimensionality reduction algorithm based on space transformations and graph embeddings. This methodology is applied in the context of dementia diagnosis through learning models, with the overarching objective of optimizing the diagnostic process.

通过距离相关特征空间和降维优化痴呆诊断。
机器学习和人工智能问题中的降维构成了模型简化的关键因素,显著提高了它们的性能和执行时间。这个过程能够更快地生成结果,同时也促进了依赖于这些模型的系统的可伸缩性和优化。通常采用两种主要方法来实现降维:基于特征选择的方法和基于特征提取的方法。本文提出了一种距离相关特征空间,并在此基础上定义了一种基于空间变换和图嵌入的降维算法。该方法通过学习模型应用于痴呆症诊断的背景下,其总体目标是优化诊断过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信