Implantable Cardiovascular Biopotential Acquisition and Stimulation Circuit With Body-Channel Communication for Transcatheter Leadless Pacemaker

IF 4.9
Manhyuck Choi;Byeongseol Kim;Sangmin Lee;Kyounghwan Kim;Mookyoung Yoo;Jihyang Wi;Gibae Nam;Minhyeok Son;Inju Yoo;Joonsung Bae;Hyoungho Ko
{"title":"Implantable Cardiovascular Biopotential Acquisition and Stimulation Circuit With Body-Channel Communication for Transcatheter Leadless Pacemaker","authors":"Manhyuck Choi;Byeongseol Kim;Sangmin Lee;Kyounghwan Kim;Mookyoung Yoo;Jihyang Wi;Gibae Nam;Minhyeok Son;Inju Yoo;Joonsung Bae;Hyoungho Ko","doi":"10.1109/TBCAS.2025.3579065","DOIUrl":null,"url":null,"abstract":"This paper presents an implantable cardiovascular biopotential acquisition and stimulation circuit with body-channel (BC) data communication and power transfer capabilities for a transcatheter leadless pacemaker. The power and size requirements of leadless pacemakers, specifically for implantable electronics and minimally-invasive transcatheter delivery, are highly challenging. To reduce size, electrocardiogram (ECG) sensing, pacing, timing and control logic, and body- coupled wireless transceivers are integrated into a single chip. The ECG sensing channel is designed using a current-reused current-feedback instrumentation amplifier to reduce power consumption. The pacing circuit is implemented using a switched-capacitor stimulator with passive discharge for high stimulation efficiency. The pacemaker utilizes BC communication instead of RF communication to achieve low power consumption. The measured input-referred noise of the sensing channel is 3.69 µV<sub>RMS</sub>, and the power consumption ranges from 4.5 to 19.4 µW. The downlink and uplink speeds of BC communication are 10 Mbps and 16 kbps, respectively. The internal rechargeable battery is properly charged when a 600 mV<sub>PP</sub>, 20 MHz input signal is applied. The leadless pacemaker prototype is implemented with a small size of 5.89 mm and 26.5 mm in diameter and length, respectively. The performance of the leadless pacemaker prototype is evaluated through <italic>in vivo</i> experiments using swine.","PeriodicalId":94031,"journal":{"name":"IEEE transactions on biomedical circuits and systems","volume":"19 5","pages":"920-935"},"PeriodicalIF":4.9000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11034684","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on biomedical circuits and systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11034684/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents an implantable cardiovascular biopotential acquisition and stimulation circuit with body-channel (BC) data communication and power transfer capabilities for a transcatheter leadless pacemaker. The power and size requirements of leadless pacemakers, specifically for implantable electronics and minimally-invasive transcatheter delivery, are highly challenging. To reduce size, electrocardiogram (ECG) sensing, pacing, timing and control logic, and body- coupled wireless transceivers are integrated into a single chip. The ECG sensing channel is designed using a current-reused current-feedback instrumentation amplifier to reduce power consumption. The pacing circuit is implemented using a switched-capacitor stimulator with passive discharge for high stimulation efficiency. The pacemaker utilizes BC communication instead of RF communication to achieve low power consumption. The measured input-referred noise of the sensing channel is 3.69 µVRMS, and the power consumption ranges from 4.5 to 19.4 µW. The downlink and uplink speeds of BC communication are 10 Mbps and 16 kbps, respectively. The internal rechargeable battery is properly charged when a 600 mVPP, 20 MHz input signal is applied. The leadless pacemaker prototype is implemented with a small size of 5.89 mm and 26.5 mm in diameter and length, respectively. The performance of the leadless pacemaker prototype is evaluated through in vivo experiments using swine.
经导管无铅起搏器体内通道通信的植入式心血管生物电位获取和刺激电路。
本文介绍了一种具有体通道(BC)数据通信和功率传输能力的可植入心血管生物电位采集和刺激电路,用于经导管无铅起搏器。无铅起搏器的功率和尺寸要求,特别是对于植入式电子设备和微创经导管输送,是极具挑战性的。为了减小尺寸,将心电图(ECG)传感、起搏器、定时和控制逻辑以及身体耦合无线收发器集成到单个芯片中。采用电流复用电流反馈仪表放大器设计心电感应通道,降低功耗。起搏电路采用具有被动放电的开关电容刺激器来实现,以提高刺激效率。该起搏器采用BC通信代替RF通信,实现低功耗。测量到的传感通道输入参考噪声为3.69 μVRMS,功耗为4.5 ~ 19.4 μW。BC通信下行速率为10mbps,上行速率为16kbps。当600 mVPP, 20 MHz输入信号被应用时,内部可充电电池被正确充电。该无导线起搏器样机的直径和长度分别为5.89 mm和26.5 mm。通过猪体内实验,对该无导线起搏器样机的性能进行了评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信