{"title":"Unlocking the Potential of Alginate Polymers: A Review of Recent Advances in Physicochemical Modulation for Versatile Biomaterials.","authors":"Shiom Mane, Poournima Sankpal, Sachinkumar Patil, Rashmi Pathak, Himanshu Sharma","doi":"10.2174/0115701638372447250515104200","DOIUrl":null,"url":null,"abstract":"<p><p>Alginate, a naturally occurring polysaccharide, exhibits immense potential for diverse ap-plications due to its ability to undergo chemical modifications and blend with other constituents. These modifications enable the creation of alginate derivatives that are not only biocompatible for biomedical and tissue engineering applications but also crucial for the thriving field of bioelectronics. Alginate derivatives serve multiple functions, including their use in wound dressings, scaffolds for drug delivery and tissue engineering, as well as key components in hydrogel formulations. Recent studies highlight the immunomodulatory properties of alginate and its derivatives, including porphy-rans, fucoidan, and chitin. These materials enhance the innate immune system, rebalance the Th1/Th2 ratio towards Th1, reduce IgE synthesis, and inhibit mast cell degranulation, alleviating allergic symptoms. In pharmaceuticals, alginate-based materials are utilised as substitutes and bio-linkers in 3D bioprinting, demonstrating their potential for creating complex tissue constructs. This review un-derscores the fundamental characteristics of alginates, outlines various chemical modification meth-odologies, and discusses recent developments in the fabrication of functional alginate-based compo-sites. By presenting this synthesis of relevant information, we aim to inspire further scientific break-throughs in the development of biocompatible electronic devices and intelligent materials.</p>","PeriodicalId":93962,"journal":{"name":"Current drug discovery technologies","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current drug discovery technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0115701638372447250515104200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Alginate, a naturally occurring polysaccharide, exhibits immense potential for diverse ap-plications due to its ability to undergo chemical modifications and blend with other constituents. These modifications enable the creation of alginate derivatives that are not only biocompatible for biomedical and tissue engineering applications but also crucial for the thriving field of bioelectronics. Alginate derivatives serve multiple functions, including their use in wound dressings, scaffolds for drug delivery and tissue engineering, as well as key components in hydrogel formulations. Recent studies highlight the immunomodulatory properties of alginate and its derivatives, including porphy-rans, fucoidan, and chitin. These materials enhance the innate immune system, rebalance the Th1/Th2 ratio towards Th1, reduce IgE synthesis, and inhibit mast cell degranulation, alleviating allergic symptoms. In pharmaceuticals, alginate-based materials are utilised as substitutes and bio-linkers in 3D bioprinting, demonstrating their potential for creating complex tissue constructs. This review un-derscores the fundamental characteristics of alginates, outlines various chemical modification meth-odologies, and discusses recent developments in the fabrication of functional alginate-based compo-sites. By presenting this synthesis of relevant information, we aim to inspire further scientific break-throughs in the development of biocompatible electronic devices and intelligent materials.