3D printed vitamin D impregnated catheters for magnetic resonance-guided interventions: proof of concept and imaging characteristics.

IF 3.1 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Liam O Cunningham, Aravinda Ganapathy, Cihat Eldeniz, Jeffery A Weisman, Kevin E Lindsay, Udayabhanu Jammalamadaka, Karthik Tappa, Amber Salter, Hongyu An, Pamela K Woodard, David H Ballard
{"title":"3D printed vitamin D impregnated catheters for magnetic resonance-guided interventions: proof of concept and imaging characteristics.","authors":"Liam O Cunningham, Aravinda Ganapathy, Cihat Eldeniz, Jeffery A Weisman, Kevin E Lindsay, Udayabhanu Jammalamadaka, Karthik Tappa, Amber Salter, Hongyu An, Pamela K Woodard, David H Ballard","doi":"10.1186/s41205-025-00273-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Catheters used for magnetic resonance (MR)-guided interventions require intra-catheter coils and often produce artifacts. This study aimed to fabricate 3D-printed catheters impregnated with vitamin D solution to allow for optimal visualization during MR-guided procedures.</p><p><strong>Methods: </strong>3D printing was used to fabricate catheters impregnated with vitamin D solution. Computer-aided design files were generated for a size 18 French catheter prototype with a compartment for vitamin D solution to be manually introduced into the catheter's lumen and sealed via thermoplastic welding. Polylactic acid (PLA) bioplastic was 3D printed into filaments via material extrusion (FDM<sup>®</sup>, Stratasys, Eden Prairie, MN) on a 5th generation Replicator 3D printer (MakerBot). Three different forms of vitamin D were used, cholecalciferol, ergocalciferol, and calcitriol, and 0.9% normal saline served as a control. Three prints of each catheter type were fabricated and scanned using a 1.5 T MR whole body scanner (Avanto, Siemens Healthcare) inside a small flex loop surface radiofrequency (RF) coil. A 3D gradient recalled echo (GRE) sequence was used with the following acquisition parameters: 4.52/11 ms TE/TR, 15° flip angle, 256 × 256 matrix with 0.5 mm × 0.5 mm in-plane resolution, 24 coronal slabs, 2 mm thickness, and 140 Hz receiver bandwidth. Three averages were used to improve the signal-to-noise ratio (SNR). The GRE sequence was run with 4 different flip angles: 3°, 15°, 30°, and 45° to perform T1 mapping.</p><p><strong>Results: </strong>All 3D-printed catheters impregnated with vitamin D produced a signal on MR. SNR for vitamin D catheters was similar across the various forms of vitamin D: mean SNRs for 100% cholecalciferol, ergocalciferol, and calcitriol were 138, 139, and 130. Mean SNR and contrast-to-noise ratio (CNR) for vitamin D catheters were significantly higher than the control saline catheter (p < 0.001, for both SNR and CNR). T1 values were lower in vitamin D-impregnated catheters compared to the saline control (228 ± 67 ms and 3371 ± 493 ms, respectively; p < 0.0001), indicating a better signal.</p><p><strong>Conclusions: </strong>3D printing of catheters impregnated with vitamin D is feasible and can potentially optimize MR-guided procedures.</p>","PeriodicalId":72036,"journal":{"name":"3D printing in medicine","volume":"11 1","pages":"27"},"PeriodicalIF":3.1000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12164080/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"3D printing in medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s41205-025-00273-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Catheters used for magnetic resonance (MR)-guided interventions require intra-catheter coils and often produce artifacts. This study aimed to fabricate 3D-printed catheters impregnated with vitamin D solution to allow for optimal visualization during MR-guided procedures.

Methods: 3D printing was used to fabricate catheters impregnated with vitamin D solution. Computer-aided design files were generated for a size 18 French catheter prototype with a compartment for vitamin D solution to be manually introduced into the catheter's lumen and sealed via thermoplastic welding. Polylactic acid (PLA) bioplastic was 3D printed into filaments via material extrusion (FDM®, Stratasys, Eden Prairie, MN) on a 5th generation Replicator 3D printer (MakerBot). Three different forms of vitamin D were used, cholecalciferol, ergocalciferol, and calcitriol, and 0.9% normal saline served as a control. Three prints of each catheter type were fabricated and scanned using a 1.5 T MR whole body scanner (Avanto, Siemens Healthcare) inside a small flex loop surface radiofrequency (RF) coil. A 3D gradient recalled echo (GRE) sequence was used with the following acquisition parameters: 4.52/11 ms TE/TR, 15° flip angle, 256 × 256 matrix with 0.5 mm × 0.5 mm in-plane resolution, 24 coronal slabs, 2 mm thickness, and 140 Hz receiver bandwidth. Three averages were used to improve the signal-to-noise ratio (SNR). The GRE sequence was run with 4 different flip angles: 3°, 15°, 30°, and 45° to perform T1 mapping.

Results: All 3D-printed catheters impregnated with vitamin D produced a signal on MR. SNR for vitamin D catheters was similar across the various forms of vitamin D: mean SNRs for 100% cholecalciferol, ergocalciferol, and calcitriol were 138, 139, and 130. Mean SNR and contrast-to-noise ratio (CNR) for vitamin D catheters were significantly higher than the control saline catheter (p < 0.001, for both SNR and CNR). T1 values were lower in vitamin D-impregnated catheters compared to the saline control (228 ± 67 ms and 3371 ± 493 ms, respectively; p < 0.0001), indicating a better signal.

Conclusions: 3D printing of catheters impregnated with vitamin D is feasible and can potentially optimize MR-guided procedures.

用于磁共振引导干预的3D打印维生素D浸渍导管:概念和成像特性的证明。
背景:用于磁共振(MR)引导干预的导管需要导管内线圈,并且经常产生伪影。本研究旨在制造浸渍维生素D溶液的3d打印导管,以便在mr引导过程中实现最佳可视化。方法:采用3D打印技术制备维生素D浸渍导尿管。计算机辅助设计文件生成了一个18尺寸的法国导管原型,其中有一个用于维生素D溶液的隔间,通过人工将维生素D溶液引入导管的管腔,并通过热塑性焊接密封。聚乳酸(PLA)生物塑料通过材料挤压(FDM®,Stratasys, Eden Prairie, MN)在第五代Replicator 3D打印机(MakerBot)上3D打印成长丝。使用了三种不同形式的维生素D:胆骨化醇、麦角骨化醇和骨化三醇,0.9%生理盐水作为对照。在一个小的弯曲环形表面射频(RF)线圈内,使用1.5 T MR全身扫描仪(Avanto, Siemens Healthcare)制作和扫描每种导管类型的三个打印件。采用三维梯度回忆回波(GRE)序列,采集参数为:TE/TR为4.52/11 ms,翻转角度为15°,256 × 256矩阵,面内分辨率为0.5 mm × 0.5 mm, 24个冠状板,厚度为2mm,接收器带宽为140 Hz。采用三次平均提高信噪比(SNR)。以3°、15°、30°和45°4个不同的翻转角度运行GRE序列,进行T1映射。结果:所有用维生素D浸渍的3d打印导管在mr上产生信号,维生素D导管的信噪比在不同形式的维生素D中相似:100%胆钙化醇、麦角钙化醇和骨化三醇的平均信噪比分别为138、139和130。维生素D导管的平均信噪比(SNR)和对比噪声比(CNR)显著高于对照组生理盐水导管(p)。结论:维生素D浸渍导管的3D打印是可行的,并有可能优化磁共振引导手术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信