Mutant EZH2 alters the epigenetic network and increases epigenetic heterogeneity in B cell lymphoma.

IF 9.8 1区 生物学 Q1 Agricultural and Biological Sciences
PLoS Biology Pub Date : 2025-06-12 eCollection Date: 2025-06-01 DOI:10.1371/journal.pbio.3003191
Ofir Griess, Noa Furth, Nofar Harpaz, Nicoletta Di Bernardo, Tomer-Meir Salame, Bareket Dassa, Ioannis Karagiannidis, Yusuke Isshiki, Menachem Gross, Ari M Melnick, Wendy Béguelin, Guy Ron, Efrat Shema
{"title":"Mutant EZH2 alters the epigenetic network and increases epigenetic heterogeneity in B cell lymphoma.","authors":"Ofir Griess, Noa Furth, Nofar Harpaz, Nicoletta Di Bernardo, Tomer-Meir Salame, Bareket Dassa, Ioannis Karagiannidis, Yusuke Isshiki, Menachem Gross, Ari M Melnick, Wendy Béguelin, Guy Ron, Efrat Shema","doi":"10.1371/journal.pbio.3003191","DOIUrl":null,"url":null,"abstract":"<p><p>Diffuse large B cell lymphomas and follicular lymphomas show recurrent mutations in epigenetic regulators; among these are loss-of-function mutations in KMT2D and gain-of-function mutations in EZH2. To systematically explore the effects of these mutations on the wiring of the epigenetic network, we applied a single-cell approach to probe a wide array of histone modifications. We show that mutant-EZH2 elicits extensive effects on the epigenome of lymphomas, beyond alterations to H3K27 methylations, and is epistatic over KMT2D mutations. Utilizing the single-cell data, we present computational methods to measure epigenetic heterogeneity. We identify an unexpected characteristic of mutant-EZH2, but not KMT2D, in increasing heterogeneity, shedding light on a novel oncogenic mechanism mediated by this mutation. Finally, we present tools to reconstruct known interactions within the epigenetic network, as well as reveal potential novel cross talk between various modifications, supported by functional perturbations. Our work highlights novel roles for mutant-EZH2 in lymphomagenesis and establishes new concepts for measuring epigenetic heterogeneity and intra-chromatin connectivity in cancer cells.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"23 6","pages":"e3003191"},"PeriodicalIF":9.8000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12161531/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pbio.3003191","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Diffuse large B cell lymphomas and follicular lymphomas show recurrent mutations in epigenetic regulators; among these are loss-of-function mutations in KMT2D and gain-of-function mutations in EZH2. To systematically explore the effects of these mutations on the wiring of the epigenetic network, we applied a single-cell approach to probe a wide array of histone modifications. We show that mutant-EZH2 elicits extensive effects on the epigenome of lymphomas, beyond alterations to H3K27 methylations, and is epistatic over KMT2D mutations. Utilizing the single-cell data, we present computational methods to measure epigenetic heterogeneity. We identify an unexpected characteristic of mutant-EZH2, but not KMT2D, in increasing heterogeneity, shedding light on a novel oncogenic mechanism mediated by this mutation. Finally, we present tools to reconstruct known interactions within the epigenetic network, as well as reveal potential novel cross talk between various modifications, supported by functional perturbations. Our work highlights novel roles for mutant-EZH2 in lymphomagenesis and establishes new concepts for measuring epigenetic heterogeneity and intra-chromatin connectivity in cancer cells.

突变体EZH2改变了B细胞淋巴瘤的表观遗传网络并增加了表观遗传异质性。
弥漫性大B细胞淋巴瘤和滤泡性淋巴瘤表现为表观遗传调控因子的反复突变;其中包括KMT2D的功能丧失突变和EZH2的功能获得突变。为了系统地探索这些突变对表观遗传网络连接的影响,我们应用单细胞方法来探测一系列组蛋白修饰。我们发现突变型ezh2对淋巴瘤的表观基因组产生了广泛的影响,超出了H3K27甲基化的改变,并且对KMT2D突变具有上位性。利用单细胞数据,我们提出了测量表观遗传异质性的计算方法。我们发现了突变体ezh2的一个意想不到的特征,而不是KMT2D,在增加异质性方面,揭示了由这种突变介导的一种新的致癌机制。最后,我们提出了重建表观遗传网络中已知相互作用的工具,以及揭示由功能扰动支持的各种修饰之间潜在的新型串扰。我们的工作突出了突变体ezh2在淋巴瘤发生中的新作用,并建立了测量癌细胞表观遗传异质性和染色质内连通性的新概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
PLoS Biology
PLoS Biology BIOCHEMISTRY & MOLECULAR BIOLOGY-BIOLOGY
CiteScore
15.40
自引率
2.00%
发文量
359
审稿时长
3-8 weeks
期刊介绍: PLOS Biology is the flagship journal of the Public Library of Science (PLOS) and focuses on publishing groundbreaking and relevant research in all areas of biological science. The journal features works at various scales, ranging from molecules to ecosystems, and also encourages interdisciplinary studies. PLOS Biology publishes articles that demonstrate exceptional significance, originality, and relevance, with a high standard of scientific rigor in methodology, reporting, and conclusions. The journal aims to advance science and serve the research community by transforming research communication to align with the research process. It offers evolving article types and policies that empower authors to share the complete story behind their scientific findings with a diverse global audience of researchers, educators, policymakers, patient advocacy groups, and the general public. PLOS Biology, along with other PLOS journals, is widely indexed by major services such as Crossref, Dimensions, DOAJ, Google Scholar, PubMed, PubMed Central, Scopus, and Web of Science. Additionally, PLOS Biology is indexed by various other services including AGRICOLA, Biological Abstracts, BIOSYS Previews, CABI CAB Abstracts, CABI Global Health, CAPES, CAS, CNKI, Embase, Journal Guide, MEDLINE, and Zoological Record, ensuring that the research content is easily accessible and discoverable by a wide range of audiences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信