Pulsatile low shear stress increases susceptibility to endothelial inflammation via upregulation of IFT and activation of YAP.

IF 6.6 3区 医学 Q1 ENGINEERING, BIOMEDICAL
APL Bioengineering Pub Date : 2025-06-11 eCollection Date: 2025-06-01 DOI:10.1063/5.0263936
Yu Hou, Hazel R C Screen, Martin M Knight
{"title":"Pulsatile low shear stress increases susceptibility to endothelial inflammation via upregulation of IFT and activation of YAP.","authors":"Yu Hou, Hazel R C Screen, Martin M Knight","doi":"10.1063/5.0263936","DOIUrl":null,"url":null,"abstract":"<p><p>This study describes the development of a microfluidic chip model of the coronary artery endothelium and its use to examine the mechanism through which pulsatile shear stress regulates inflammation. The chip successfully recapitulates increased susceptibility to cytokine mediated arterial inflammation as observed <i>in vivo</i> in areas of low shear stress (LSS). Previous <i>in vivo</i> data show that low shear stress in the porcine aorta modulates 36 cilia-associated genes of which five are also Yes-associated protein (YAP) target genes. We demonstrate that pulsatile low shear stress (LSS) compared to high shear stress (HSS) preferentially drives YAP nuclear translocation and expression of the YAP target gene, Myosin Heavy Chain 10 (MYH10), which is also one of the cilia genes regulated by shear stress <i>in vivo</i>. LSS also increases expression of the cilia intraflagellar transport protein gene, IFT88, resulting in an increase in the primary cilia length and prevalence. Using a combination of siRNA and pharmaceutical regulators, we show that these changes in YAP, IFT88, and MYH10 drive the increased susceptibility to pro-inflammatory cytokines caused by LSS. Hence, we demonstrate that pulsatile LSS primes endothelial cells, increasing susceptibility to inflammation, and that this occurs through a novel pathway involving modulation of YAP and primary cilia/IFT. Such changes may also influence other cilia and YAP dependent responses. In conclusion, our microfabricated endothelial chip model reveals involvement of mechanosensitive IFT and YAP in arterial inflammation, which may provide novel therapeutic targets for the management of vascular disease such as atherosclerosis.</p>","PeriodicalId":46288,"journal":{"name":"APL Bioengineering","volume":"9 2","pages":"026122"},"PeriodicalIF":6.6000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12162136/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0263936","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study describes the development of a microfluidic chip model of the coronary artery endothelium and its use to examine the mechanism through which pulsatile shear stress regulates inflammation. The chip successfully recapitulates increased susceptibility to cytokine mediated arterial inflammation as observed in vivo in areas of low shear stress (LSS). Previous in vivo data show that low shear stress in the porcine aorta modulates 36 cilia-associated genes of which five are also Yes-associated protein (YAP) target genes. We demonstrate that pulsatile low shear stress (LSS) compared to high shear stress (HSS) preferentially drives YAP nuclear translocation and expression of the YAP target gene, Myosin Heavy Chain 10 (MYH10), which is also one of the cilia genes regulated by shear stress in vivo. LSS also increases expression of the cilia intraflagellar transport protein gene, IFT88, resulting in an increase in the primary cilia length and prevalence. Using a combination of siRNA and pharmaceutical regulators, we show that these changes in YAP, IFT88, and MYH10 drive the increased susceptibility to pro-inflammatory cytokines caused by LSS. Hence, we demonstrate that pulsatile LSS primes endothelial cells, increasing susceptibility to inflammation, and that this occurs through a novel pathway involving modulation of YAP and primary cilia/IFT. Such changes may also influence other cilia and YAP dependent responses. In conclusion, our microfabricated endothelial chip model reveals involvement of mechanosensitive IFT and YAP in arterial inflammation, which may provide novel therapeutic targets for the management of vascular disease such as atherosclerosis.

脉动性低剪切应力通过上调IFT和激活YAP增加内皮细胞炎症的易感性。
本研究描述了冠状动脉内皮微流控芯片模型的发展及其用于研究脉冲剪切应力调节炎症的机制。该芯片成功再现了在体内低剪切应力(LSS)区域观察到的对细胞因子介导的动脉炎症的易感性增加。先前的体内数据表明,猪主动脉的低剪切应力可调节36个纤毛相关基因,其中5个也是yes相关蛋白(YAP)靶基因。我们证明,与高剪切应力(HSS)相比,脉动低剪切应力(LSS)优先驱动YAP核易位和YAP靶基因Myosin重链10 (MYH10)的表达,MYH10也是受剪切应力调节的纤毛基因之一。LSS还增加了纤毛鞭毛内转运蛋白基因IFT88的表达,导致初级纤毛长度和发病率增加。通过siRNA和药物调节因子的结合,我们发现YAP、IFT88和MYH10的这些变化驱动了LSS引起的对促炎细胞因子的易感性增加。因此,我们证明脉动性LSS启动内皮细胞,增加对炎症的易感性,这是通过一种涉及YAP和初级纤毛/IFT调节的新途径发生的。这种变化也可能影响其他纤毛和YAP依赖性反应。总之,我们的微结构内皮芯片模型揭示了机械敏感性IFT和YAP参与动脉炎症,这可能为动脉粥样硬化等血管疾病的治疗提供新的治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
APL Bioengineering
APL Bioengineering ENGINEERING, BIOMEDICAL-
CiteScore
9.30
自引率
6.70%
发文量
39
审稿时长
19 weeks
期刊介绍: APL Bioengineering is devoted to research at the intersection of biology, physics, and engineering. The journal publishes high-impact manuscripts specific to the understanding and advancement of physics and engineering of biological systems. APL Bioengineering is the new home for the bioengineering and biomedical research communities. APL Bioengineering publishes original research articles, reviews, and perspectives. Topical coverage includes: -Biofabrication and Bioprinting -Biomedical Materials, Sensors, and Imaging -Engineered Living Systems -Cell and Tissue Engineering -Regenerative Medicine -Molecular, Cell, and Tissue Biomechanics -Systems Biology and Computational Biology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信