AE-BoNet: A Deep Learning Method for Pediatric Bone Age Estimation using an Unsupervised Pre-Trained Model.

Q3 Medicine
Mojtaba Sirati-Amsheh, Elham Shabaninia, Ali Chaparian
{"title":"AE-BoNet: A Deep Learning Method for Pediatric Bone Age Estimation using an Unsupervised Pre-Trained Model.","authors":"Mojtaba Sirati-Amsheh, Elham Shabaninia, Ali Chaparian","doi":"10.31661/jbpe.v0i0.2304-1609","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Accurate bone age assessment is essential for determining the actual degree of development and indicating a disorder in growth. While clinical bone age assessment techniques are time-consuming and prone to inter/intra-observer variability, deep learning-based methods are used for automated bone age estimation.</p><p><strong>Objective: </strong>The current study aimed to develop an unsupervised pre-training approach for automatic bone age estimation, addressing the challenge of limited labeled data and unique features of radiographic images of hand bones. Bone age estimation is complex and usually requires more labeling data. On the other hand, there is no model trained with hand radiographic images, reused for bone age estimation.</p><p><strong>Material and methods: </strong>In this fundamental-applied research, the collection of Radiological Society of North America (RSNA) X-ray image collection is used to evaluate the efficiency of the proposed bone age estimation method. An autoencoder is trained to reconstruct the original hand radiography images. Then, a model based on the trained encoder produces the final estimation of bone age.</p><p><strong>Results: </strong>Experimental results on the Radiological Society of North America (RSNA) X-ray image collection achieve a Mean Absolute Error (MAE) of 9.3 months, which is comparable to state-of-the-art methods.</p><p><strong>Conclusion: </strong>This study presents an approach to estimating bone age on hand radiographs utilizing unsupervised pre-training with an autoencoder and also highlights the significance of autoencoders and unsupervised learning as efficient substitutes for conventional techniques.</p>","PeriodicalId":38035,"journal":{"name":"Journal of Biomedical Physics and Engineering","volume":"15 3","pages":"271-280"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12153479/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Physics and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31661/jbpe.v0i0.2304-1609","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Accurate bone age assessment is essential for determining the actual degree of development and indicating a disorder in growth. While clinical bone age assessment techniques are time-consuming and prone to inter/intra-observer variability, deep learning-based methods are used for automated bone age estimation.

Objective: The current study aimed to develop an unsupervised pre-training approach for automatic bone age estimation, addressing the challenge of limited labeled data and unique features of radiographic images of hand bones. Bone age estimation is complex and usually requires more labeling data. On the other hand, there is no model trained with hand radiographic images, reused for bone age estimation.

Material and methods: In this fundamental-applied research, the collection of Radiological Society of North America (RSNA) X-ray image collection is used to evaluate the efficiency of the proposed bone age estimation method. An autoencoder is trained to reconstruct the original hand radiography images. Then, a model based on the trained encoder produces the final estimation of bone age.

Results: Experimental results on the Radiological Society of North America (RSNA) X-ray image collection achieve a Mean Absolute Error (MAE) of 9.3 months, which is comparable to state-of-the-art methods.

Conclusion: This study presents an approach to estimating bone age on hand radiographs utilizing unsupervised pre-training with an autoencoder and also highlights the significance of autoencoders and unsupervised learning as efficient substitutes for conventional techniques.

AE-BoNet:一种使用无监督预训练模型进行儿童骨龄估计的深度学习方法。
背景:准确的骨龄评估对于确定实际发育程度和指示生长障碍至关重要。虽然临床骨龄评估技术耗时且容易在观察者之间/内部发生变化,但基于深度学习的方法用于自动骨龄估计。目的:本研究旨在开发一种用于自动骨龄估计的无监督预训练方法,以解决标记数据有限和手骨放射图像独特特征的挑战。骨龄估计是复杂的,通常需要更多的标记数据。另一方面,没有模型训练与手放射图像,重新用于骨年龄估计。材料和方法:在本基础应用研究中,使用北美放射学会(RSNA) x射线图像集合来评估所提出的骨龄估计方法的有效性。训练一个自动编码器来重建原始的手部放射图像。然后,基于训练好的编码器的模型产生最终的骨龄估计。结果:北美放射学会(RSNA) x射线图像采集的实验结果达到9.3个月的平均绝对误差(MAE),与最先进的方法相当。结论:本研究提出了一种利用自动编码器进行无监督预训练来估计手部x线片骨年龄的方法,并强调了自动编码器和无监督学习作为传统技术有效替代品的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biomedical Physics and Engineering
Journal of Biomedical Physics and Engineering Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
2.90
自引率
0.00%
发文量
64
审稿时长
10 weeks
期刊介绍: The Journal of Biomedical Physics and Engineering (JBPE) is a bimonthly peer-reviewed English-language journal that publishes high-quality basic sciences and clinical research (experimental or theoretical) broadly concerned with the relationship of physics to medicine and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信