Begüm Bilgiç, Judit Sandquist, Svein Jarle Horn, Lu Feng, Cecilie Græsholt, Asmira Delić, Roger Khalil, Michal Sposób
{"title":"Thermal hydrolysis treatment of digestates derived from food waste and sewage sludge - effect on residual methane potential.","authors":"Begüm Bilgiç, Judit Sandquist, Svein Jarle Horn, Lu Feng, Cecilie Græsholt, Asmira Delić, Roger Khalil, Michal Sposób","doi":"10.2166/wst.2025.068","DOIUrl":null,"url":null,"abstract":"<p><p>Digestate, a key byproduct of anaerobic digestion (AD), holds residual methane potential (RMP) that must be stabilized or recovered to prevent greenhouse gas emissions after field use. Thermal hydrolysis (TH), typically a pretreatment for AD, improves biogas production. This study assesses RMP in digestates from food waste (FW) and sewage sludge (SS) biogas plants, treated with TH at 160 and 190 °C. For the liquid fraction, FW digestate at 160 °C yielded 1.5 times more methane than untreated digestate, while SS digestate showed a threefold increase. The solid fraction of FW digestate at 160 °C had 1.4 times higher methane yield than untreated, but SS digestate produced less methane after TH. Adding sulfuric acid after TH increased phosphate release but reduced methane production in both digestates. Overall, TH as a post-treatment enhanced organic content release into the liquid fraction, enhancing methane yield, while acid addition improved phosphorus solubility, thereby enhancing digestate's nutrient value.</p>","PeriodicalId":23653,"journal":{"name":"Water Science and Technology","volume":"91 11","pages":"1234-1247"},"PeriodicalIF":2.5000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Science and Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/wst.2025.068","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/23 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Digestate, a key byproduct of anaerobic digestion (AD), holds residual methane potential (RMP) that must be stabilized or recovered to prevent greenhouse gas emissions after field use. Thermal hydrolysis (TH), typically a pretreatment for AD, improves biogas production. This study assesses RMP in digestates from food waste (FW) and sewage sludge (SS) biogas plants, treated with TH at 160 and 190 °C. For the liquid fraction, FW digestate at 160 °C yielded 1.5 times more methane than untreated digestate, while SS digestate showed a threefold increase. The solid fraction of FW digestate at 160 °C had 1.4 times higher methane yield than untreated, but SS digestate produced less methane after TH. Adding sulfuric acid after TH increased phosphate release but reduced methane production in both digestates. Overall, TH as a post-treatment enhanced organic content release into the liquid fraction, enhancing methane yield, while acid addition improved phosphorus solubility, thereby enhancing digestate's nutrient value.
期刊介绍:
Water Science and Technology publishes peer-reviewed papers on all aspects of the science and technology of water and wastewater. Papers are selected by a rigorous peer review procedure with the aim of rapid and wide dissemination of research results, development and application of new techniques, and related managerial and policy issues. Scientists, engineers, consultants, managers and policy-makers will find this journal essential as a permanent record of progress of research activities and their practical applications.