Prediction of outcomes following intravenous thrombolysis in patients with acute ischemic stroke using serum UCH-L1, S100β, and NSE: a multicenter prospective cohort study employing machine learning methods.

IF 4.7 2区 医学 Q1 CLINICAL NEUROLOGY
Therapeutic Advances in Neurological Disorders Pub Date : 2025-06-10 eCollection Date: 2025-01-01 DOI:10.1177/17562864251342429
Ming-Ya Luo, Yang Qu, Peng Zhang, Reziya Abuduxukuer, Li-Juan Wang, Li-Chong Yang, Zhi-Guo Li, Xiao-Dong Liu, Ce Han, Dan Li, Wei-Jia Wang, Dian-Ping Lv, Ming Liu, Jian Gao, Jing Xu, Yongfei Jiang, Hai-Nan Chen, Fu-Jin Li, Li-Ming Sun, Qi-Dong Sun, Yingbin Qi, Si-Yin Sun, Yu Zhang, Zhen-Ni Guo, Yi Yang
{"title":"Prediction of outcomes following intravenous thrombolysis in patients with acute ischemic stroke using serum UCH-L1, S100β, and NSE: a multicenter prospective cohort study employing machine learning methods.","authors":"Ming-Ya Luo, Yang Qu, Peng Zhang, Reziya Abuduxukuer, Li-Juan Wang, Li-Chong Yang, Zhi-Guo Li, Xiao-Dong Liu, Ce Han, Dan Li, Wei-Jia Wang, Dian-Ping Lv, Ming Liu, Jian Gao, Jing Xu, Yongfei Jiang, Hai-Nan Chen, Fu-Jin Li, Li-Ming Sun, Qi-Dong Sun, Yingbin Qi, Si-Yin Sun, Yu Zhang, Zhen-Ni Guo, Yi Yang","doi":"10.1177/17562864251342429","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Acute ischemic stroke (AIS) is a leading cause of mortality and disability worldwide. Intravenous thrombolysis (IVT) improves recovery, but predicting outcomes remains challenging. Machine learning (ML) and biomarkers like ubiquitin carboxyl-terminal hydrolase L1 (UCH-L1), S100 calcium-binding protein β (S100β), and neuron-specific enolase (NSE) may enhance prognostic accuracy.</p><p><strong>Objectives: </strong>We aimed to assess the predictive value of serum brain injury biomarkers for 3-month outcomes in AIS patients treated with IVT, using an ML-based model.</p><p><strong>Design: </strong>A multicenter prospective cohort study was conducted, enrolling AIS patients treated with recombinant tissue plasminogen activator from 16 hospitals.</p><p><strong>Methods: </strong>Of 1580 patients, 1028 were included and divided into training (<i>n</i> = 571), testing (<i>n</i> = 243), and external validation (<i>n</i> = 214) cohorts. Thirty-three variables, including demographics, clinical data, and biomarkers (UCH-L1, S100β, NSE), were analyzed. Least Absolute Shrinkage and Selection Operator regression was used for feature selection, and six ML algorithms were tested. Model performance was evaluated using the area under the receiver operating characteristic curve (AUC), <i>F</i>1-score, calibration curve, and decision curve analysis.</p><p><strong>Results: </strong>The light gradient boosting machines (LightGBM) model achieved the best performance in the training dataset (AUC: 0.846; <i>F</i>1-score: 0.789) and external validation dataset (AUC: 0.714). Eight critical predictors, including age, admission National Institutes of Health Stroke Scale (NIHSS) score, Trial of Org 10172 in Acute Stroke Treatment, white blood cell, finger blood glucose, UCH-L1, S100β, and NSE, were identified and incorporated into an ML model for clinical application. Shapley additive interpretation analysis enhances the interpretability of the model, with NIHSS score and NSE as top contributors. External validation confirmed good calibration and consistent net benefit across threshold probabilities (0.1-0.8).</p><p><strong>Conclusion: </strong>Integrating serum biomarkers (UCH-L1, S100β, NSE) with ML significantly improves 3-month outcome prediction in AIS patients. The LightGBM model offers robust performance and clinical interpretability for individualized treatment planning.</p>","PeriodicalId":22980,"journal":{"name":"Therapeutic Advances in Neurological Disorders","volume":"18 ","pages":"17562864251342429"},"PeriodicalIF":4.7000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12159470/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Therapeutic Advances in Neurological Disorders","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/17562864251342429","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Acute ischemic stroke (AIS) is a leading cause of mortality and disability worldwide. Intravenous thrombolysis (IVT) improves recovery, but predicting outcomes remains challenging. Machine learning (ML) and biomarkers like ubiquitin carboxyl-terminal hydrolase L1 (UCH-L1), S100 calcium-binding protein β (S100β), and neuron-specific enolase (NSE) may enhance prognostic accuracy.

Objectives: We aimed to assess the predictive value of serum brain injury biomarkers for 3-month outcomes in AIS patients treated with IVT, using an ML-based model.

Design: A multicenter prospective cohort study was conducted, enrolling AIS patients treated with recombinant tissue plasminogen activator from 16 hospitals.

Methods: Of 1580 patients, 1028 were included and divided into training (n = 571), testing (n = 243), and external validation (n = 214) cohorts. Thirty-three variables, including demographics, clinical data, and biomarkers (UCH-L1, S100β, NSE), were analyzed. Least Absolute Shrinkage and Selection Operator regression was used for feature selection, and six ML algorithms were tested. Model performance was evaluated using the area under the receiver operating characteristic curve (AUC), F1-score, calibration curve, and decision curve analysis.

Results: The light gradient boosting machines (LightGBM) model achieved the best performance in the training dataset (AUC: 0.846; F1-score: 0.789) and external validation dataset (AUC: 0.714). Eight critical predictors, including age, admission National Institutes of Health Stroke Scale (NIHSS) score, Trial of Org 10172 in Acute Stroke Treatment, white blood cell, finger blood glucose, UCH-L1, S100β, and NSE, were identified and incorporated into an ML model for clinical application. Shapley additive interpretation analysis enhances the interpretability of the model, with NIHSS score and NSE as top contributors. External validation confirmed good calibration and consistent net benefit across threshold probabilities (0.1-0.8).

Conclusion: Integrating serum biomarkers (UCH-L1, S100β, NSE) with ML significantly improves 3-month outcome prediction in AIS patients. The LightGBM model offers robust performance and clinical interpretability for individualized treatment planning.

使用血清UCH-L1、S100β和NSE预测急性缺血性卒中患者静脉溶栓后的预后:一项采用机器学习方法的多中心前瞻性队列研究
背景:急性缺血性脑卒中(AIS)是世界范围内导致死亡和残疾的主要原因。静脉溶栓(IVT)可以改善康复,但预测结果仍然具有挑战性。机器学习(ML)和泛素羧基末端水解酶L1 (UCH-L1)、S100钙结合蛋白β (S100β)和神经元特异性烯醇化酶(NSE)等生物标志物可能会提高预后的准确性。目的:我们旨在使用基于ml的模型评估血清脑损伤生物标志物对接受IVT治疗的AIS患者3个月预后的预测价值。设计:进行了一项多中心前瞻性队列研究,纳入了来自16家医院接受重组组织型纤溶酶原激活剂治疗的AIS患者。方法:在1580例患者中,纳入1028例,分为训练组(n = 571)、测试组(n = 243)和外部验证组(n = 214)。分析了33个变量,包括人口统计学、临床数据和生物标志物(UCH-L1、S100β、NSE)。使用最小绝对收缩和选择算子回归进行特征选择,并测试了六种ML算法。使用受试者工作特征曲线(AUC)下面积、f1评分、校准曲线和决策曲线分析来评估模型的性能。结果:光梯度增强机(light gradient boosting machines, LightGBM)模型在训练数据集中表现最佳(AUC: 0.846;F1-score: 0.789)和外部验证数据集(AUC: 0.714)。确定了8个关键预测因子,包括年龄、入院美国国立卫生研究院卒中量表(NIHSS)评分、急性卒中治疗的Org 10172试验、白细胞、手指血糖、UCH-L1、S100β和NSE,并将其纳入ML模型用于临床应用。Shapley加性解释分析增强了模型的可解释性,NIHSS分数和NSE是最重要的贡献者。外部验证证实了良好的校准和一致的净效益跨越阈值概率(0.1-0.8)。结论:将血清生物标志物(UCH-L1、S100β、NSE)与ML结合可显著改善AIS患者3个月预后预测。LightGBM模型为个性化治疗计划提供了强大的性能和临床可解释性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.30
自引率
1.70%
发文量
62
审稿时长
15 weeks
期刊介绍: Therapeutic Advances in Neurological Disorders is a peer-reviewed, open access journal delivering the highest quality articles, reviews, and scholarly comment on pioneering efforts and innovative studies across all areas of neurology. The journal has a strong clinical and pharmacological focus and is aimed at clinicians and researchers in neurology, providing a forum in print and online for publishing the highest quality articles in this area.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信