{"title":"Strategies for the Patient-Specific Implant Angle of Bone Scaffolds Using Optimization.","authors":"Jun Won Choi, Jung Jin Kim","doi":"10.1007/s13770-025-00730-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Bone scaffolds are artificial structures used for restoring bone functionality via the reconstruction and repair of bone tissue. Although these scaffolds interact seamlessly with the surrounding tissue, conventional scaffold designs often fail to consider the microstructure of the surrounding bone, leading to reduced mechanical performance. This study proposed an implantation angle optimization approach for bone scaffolds that considers the microstructures around the implant, thus improving the mechanical properties of commonly used scaffolds.</p><p><strong>Method: </strong>This study proposed a novel method for optimizing the implantation angle of bone scaffolds, thereby enhancing their mechanical performance and integration with the surrounding bone tissue. A finite element model based on the imaging data of the bone scaffold within the skeletal system was constructed. Then, the structural behavior under external load was analyzed to determine the optimal implantation angle by rotating the bone scaffold.</p><p><strong>Result: </strong>Bone scaffolds with optimized angles show up to 7.53% strain energy difference between the scaffold and native bone, which improves load transfer and supports more natural bone remodeling. These results suggest that this approach enhances scaffold stability and reduces the risk of implant failure.</p><p><strong>Conclusion: </strong>The results highlight the potential of the proposed approach to optimize the implantation angle considering the bone microstructure, thus significantly enhancing scaffold performance. The combination of these strategies shows significant potential for advancing bone-repair solutions and improving patient outcomes in orthopedic surgeries.</p>","PeriodicalId":23126,"journal":{"name":"Tissue engineering and regenerative medicine","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue engineering and regenerative medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13770-025-00730-z","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Bone scaffolds are artificial structures used for restoring bone functionality via the reconstruction and repair of bone tissue. Although these scaffolds interact seamlessly with the surrounding tissue, conventional scaffold designs often fail to consider the microstructure of the surrounding bone, leading to reduced mechanical performance. This study proposed an implantation angle optimization approach for bone scaffolds that considers the microstructures around the implant, thus improving the mechanical properties of commonly used scaffolds.
Method: This study proposed a novel method for optimizing the implantation angle of bone scaffolds, thereby enhancing their mechanical performance and integration with the surrounding bone tissue. A finite element model based on the imaging data of the bone scaffold within the skeletal system was constructed. Then, the structural behavior under external load was analyzed to determine the optimal implantation angle by rotating the bone scaffold.
Result: Bone scaffolds with optimized angles show up to 7.53% strain energy difference between the scaffold and native bone, which improves load transfer and supports more natural bone remodeling. These results suggest that this approach enhances scaffold stability and reduces the risk of implant failure.
Conclusion: The results highlight the potential of the proposed approach to optimize the implantation angle considering the bone microstructure, thus significantly enhancing scaffold performance. The combination of these strategies shows significant potential for advancing bone-repair solutions and improving patient outcomes in orthopedic surgeries.
期刊介绍:
Tissue Engineering and Regenerative Medicine (Tissue Eng Regen Med, TERM), the official journal of the Korean Tissue Engineering and Regenerative Medicine Society, is a publication dedicated to providing research- based solutions to issues related to human diseases. This journal publishes articles that report substantial information and original findings on tissue engineering, medical biomaterials, cells therapy, stem cell biology and regenerative medicine.