Tribological Evaluation of Polyether Ether Ketone (PEEK) Nanocomposite Coatings Reinforced with Ceria-Effect of Composition, Load, Speed, Counterface, and UV Exposure.
Amal A Seenath, Mirza Murtuza Ali Baig, Abdul Samad Mohammed
{"title":"Tribological Evaluation of Polyether Ether Ketone (PEEK) Nanocomposite Coatings Reinforced with Ceria-Effect of Composition, Load, Speed, Counterface, and UV Exposure.","authors":"Amal A Seenath, Mirza Murtuza Ali Baig, Abdul Samad Mohammed","doi":"10.3390/polym17111487","DOIUrl":null,"url":null,"abstract":"<p><p>Ceria nanofillers were incorporated into PEEK coatings at concentrations of 0.5, 1.5, and 3 wt% and applied to mild steel samples using an electrostatic spraying technique. The tribological performance of these coatings was assessed under various loads and sliding speeds. XRD, FTIR, and microhardness tests were conducted to characterize the chemical and mechanical properties of the coatings. The 1.5 wt% ceria-reinforced PEEK coating outperformed the pristine PEEK and other concentrations in terms of wear resistance. The counterface material did not affect the wear resistance of the optimized PEEK/1.5 wt% ceria nanocomposite coating, which also demonstrated superior wear resistance after UV exposure as compared to that of pristine PEEK coatings.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 11","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12158187/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17111487","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Ceria nanofillers were incorporated into PEEK coatings at concentrations of 0.5, 1.5, and 3 wt% and applied to mild steel samples using an electrostatic spraying technique. The tribological performance of these coatings was assessed under various loads and sliding speeds. XRD, FTIR, and microhardness tests were conducted to characterize the chemical and mechanical properties of the coatings. The 1.5 wt% ceria-reinforced PEEK coating outperformed the pristine PEEK and other concentrations in terms of wear resistance. The counterface material did not affect the wear resistance of the optimized PEEK/1.5 wt% ceria nanocomposite coating, which also demonstrated superior wear resistance after UV exposure as compared to that of pristine PEEK coatings.
期刊介绍:
Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.