Francesco Gerardo Mecca, Nathália Oderich Muniz, Devis Bellucci, Cécile Legallais, Timothée Baudequin, Valeria Cannillo
{"title":"Inclusion of Magnesium- and Strontium-Enriched Bioactive Glass into Electrospun PCL Scaffolds for Tissue Regeneration.","authors":"Francesco Gerardo Mecca, Nathália Oderich Muniz, Devis Bellucci, Cécile Legallais, Timothée Baudequin, Valeria Cannillo","doi":"10.3390/polym17111555","DOIUrl":null,"url":null,"abstract":"<p><p>Bioactive glass (BG) is a promising material known for its osteogenic, osteoinductive, antimicrobial, and angiogenic properties. For this reason, melt-quench-derived BG powders embedded into composite electrospun poly(ε-caprolactone) (PCL) mats represent an interesting option for the fabrication of bioactive scaffolds. However, incorporating BG into nano-/micro-fibers remains challenging. Our research focused on integrating two BG compositions into the mat structure: 45S5 and 45S5_MS (the former being a well-known, commercially available BG composition, and the latter a magnesium- and strontium-enriched composition based on 45S5). Both BG types were added at concentrations of 10 wt.% and 20 wt.%. A careful grinding process enabled effective dispersion of BG into a PCL solution, resulting in fibers ranging from 500 nm to 2 µm in diameter. The mats' mechanical properties were not hindered by the inclusion of BG powder within the fibrous structure. Furthermore, our results indicate that BG powders were successfully incorporated into the scaffolds, not only preserving their properties but potentially enhancing their biological performance compared to unloaded PCL electrospun scaffolds. Our findings indicate proper cell differentiation and proliferation, supporting the potential of these devices for tissue regeneration applications.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 11","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12158232/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17111555","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Bioactive glass (BG) is a promising material known for its osteogenic, osteoinductive, antimicrobial, and angiogenic properties. For this reason, melt-quench-derived BG powders embedded into composite electrospun poly(ε-caprolactone) (PCL) mats represent an interesting option for the fabrication of bioactive scaffolds. However, incorporating BG into nano-/micro-fibers remains challenging. Our research focused on integrating two BG compositions into the mat structure: 45S5 and 45S5_MS (the former being a well-known, commercially available BG composition, and the latter a magnesium- and strontium-enriched composition based on 45S5). Both BG types were added at concentrations of 10 wt.% and 20 wt.%. A careful grinding process enabled effective dispersion of BG into a PCL solution, resulting in fibers ranging from 500 nm to 2 µm in diameter. The mats' mechanical properties were not hindered by the inclusion of BG powder within the fibrous structure. Furthermore, our results indicate that BG powders were successfully incorporated into the scaffolds, not only preserving their properties but potentially enhancing their biological performance compared to unloaded PCL electrospun scaffolds. Our findings indicate proper cell differentiation and proliferation, supporting the potential of these devices for tissue regeneration applications.
期刊介绍:
Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.