Rolando Manuel Guardo-Ruiz, Linda Mychell Puello-Castellón, Rodrigo Ortega-Toro, Eduardo Andrés Aguilar-Vásquez, Ángel Darío González-Delgado
{"title":"Enhancing Technical Performance of PVC Production: A WEP-Based Energy and Water Assessment.","authors":"Rolando Manuel Guardo-Ruiz, Linda Mychell Puello-Castellón, Rodrigo Ortega-Toro, Eduardo Andrés Aguilar-Vásquez, Ángel Darío González-Delgado","doi":"10.3390/polym17111561","DOIUrl":null,"url":null,"abstract":"<p><p>Polyvinyl chloride (PVC) is one of the most widely used polymers due to its physical properties and versatility. Water consumption of the suspension method is a critical issue that hinders competitiveness. In that case, this study implements water integration through direct recycling, with the aim of minimizing both freshwater consumption and wastewater generation. The source-sink diagram was used to generate the recycled water network, and the integrated process was simulated using software. From simulation data, the water-energy-product (WEP) analysis method was used to assess the process performance, and sustainability indicators for water, energy, and product were evaluated. Fractional water consumption and wastewater production ratio indicators increased to 51.1% and 55.0%, compared to 41% and 54% in the non-integrated process, showing improved water efficiency and cost reduction. The unreacted material reuse index reached 100%, while the production yield was 99.8%, due to effective recycling of unreacted VCM. The use of natural gas and energy integration led to optimal performance in TCE, NGCI, and EECI indicators. However, the ESI indicator was high (3.59 MJ/t) due to energy demands from thermal control equipment for water recirculation.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 11","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12157895/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17111561","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Polyvinyl chloride (PVC) is one of the most widely used polymers due to its physical properties and versatility. Water consumption of the suspension method is a critical issue that hinders competitiveness. In that case, this study implements water integration through direct recycling, with the aim of minimizing both freshwater consumption and wastewater generation. The source-sink diagram was used to generate the recycled water network, and the integrated process was simulated using software. From simulation data, the water-energy-product (WEP) analysis method was used to assess the process performance, and sustainability indicators for water, energy, and product were evaluated. Fractional water consumption and wastewater production ratio indicators increased to 51.1% and 55.0%, compared to 41% and 54% in the non-integrated process, showing improved water efficiency and cost reduction. The unreacted material reuse index reached 100%, while the production yield was 99.8%, due to effective recycling of unreacted VCM. The use of natural gas and energy integration led to optimal performance in TCE, NGCI, and EECI indicators. However, the ESI indicator was high (3.59 MJ/t) due to energy demands from thermal control equipment for water recirculation.
期刊介绍:
Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.