{"title":"Enhanced Energy Storage Capacity in NBT Micro-Flake Incorporated PVDF Composites.","authors":"Tingwei Mei, Mingtao Zhu, Hongjian Zhang, Yong Zhang","doi":"10.3390/polym17111486","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, dielectric films with a high energy-storage capacity have attracted significant attention due to their wide applications in the fields of renewable energy, electronic devices, and power systems. Their fundamental principle relies on the polarization and depolarization processes of dielectric materials under external electric fields to store and release electrical energy, featuring a high power density and high charge-discharge efficiency. In this study, sodium bismuth titanate (NBT) micro-flakes synthesized via a molten salt method were treated with hydrogen peroxide and subsequently blended with a polyvinylidene fluoride (PVDF) matrix. An oriented tape-casting process was utilized to fabricate a dielectric thin film with enhanced energy storage capacity under a weakened electric field. Experimental results demonstrated that the introduction of modified NBT micro-flakes facilitated the interfacial interactions between the ceramic fillers and polymer matrix. Additionally, chemical interactions between surface hydroxyl groups and fluorine atoms within PVDF promoted the phase transition from the α to the β phase. Consequently, the energy storage density of PVDF-NBT composite increased from 2.8 J cm<sup>-3</sup> to 6.1 J cm<sup>-3</sup>, representing a 110% enhancement. This design strategy provides novel insights for material innovation and interfacial engineering, showcasing promising potential for next-generation power systems.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 11","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12157018/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17111486","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, dielectric films with a high energy-storage capacity have attracted significant attention due to their wide applications in the fields of renewable energy, electronic devices, and power systems. Their fundamental principle relies on the polarization and depolarization processes of dielectric materials under external electric fields to store and release electrical energy, featuring a high power density and high charge-discharge efficiency. In this study, sodium bismuth titanate (NBT) micro-flakes synthesized via a molten salt method were treated with hydrogen peroxide and subsequently blended with a polyvinylidene fluoride (PVDF) matrix. An oriented tape-casting process was utilized to fabricate a dielectric thin film with enhanced energy storage capacity under a weakened electric field. Experimental results demonstrated that the introduction of modified NBT micro-flakes facilitated the interfacial interactions between the ceramic fillers and polymer matrix. Additionally, chemical interactions between surface hydroxyl groups and fluorine atoms within PVDF promoted the phase transition from the α to the β phase. Consequently, the energy storage density of PVDF-NBT composite increased from 2.8 J cm-3 to 6.1 J cm-3, representing a 110% enhancement. This design strategy provides novel insights for material innovation and interfacial engineering, showcasing promising potential for next-generation power systems.
期刊介绍:
Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.