{"title":"Effects of Chitosan on Drug Load and Release for Cisplatin-Hydroxyapatite-Gelatin Composite Microspheres.","authors":"Meng-Ying Wu, I-Fang Kao, Shiow-Kang Yen","doi":"10.3390/polym17111485","DOIUrl":null,"url":null,"abstract":"<p><p>Cisplatin, a widely used chemotherapeutic agent, is limited by its poor bioavailability, rapid systemic clearance, and severe side effects. To overcome these limitations, hydroxyapatite-gelatin composite microspheres were developed to improve drug entrapment efficiency (DEE) and provide sustained drug release. Various formulations were prepared by incorporating chitosan either by mixing once or through a sequential coating strategy. By adjusting the loading procedure, the DEE increased from 58% to 99%. The composite microsphere effectively controlled the total drug release duration, extending it from one month to over 5 months. Moreover, the MTT assay demonstrated that all samples effectively inhibited cell growth, with cell viability reduced to less than 20% after 2 weeks of experimentation. These findings demonstrate that the sequential chitosan coating method offers superior drug entrapment and prolonged release compared to mixing chitosan once, exhibiting its potential as a sustained drug delivery system for cancer treatment.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 11","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12158018/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17111485","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Cisplatin, a widely used chemotherapeutic agent, is limited by its poor bioavailability, rapid systemic clearance, and severe side effects. To overcome these limitations, hydroxyapatite-gelatin composite microspheres were developed to improve drug entrapment efficiency (DEE) and provide sustained drug release. Various formulations were prepared by incorporating chitosan either by mixing once or through a sequential coating strategy. By adjusting the loading procedure, the DEE increased from 58% to 99%. The composite microsphere effectively controlled the total drug release duration, extending it from one month to over 5 months. Moreover, the MTT assay demonstrated that all samples effectively inhibited cell growth, with cell viability reduced to less than 20% after 2 weeks of experimentation. These findings demonstrate that the sequential chitosan coating method offers superior drug entrapment and prolonged release compared to mixing chitosan once, exhibiting its potential as a sustained drug delivery system for cancer treatment.
期刊介绍:
Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.