Kirollos Tadrousse, Catherine A Cash, Madhulika R Kastury, Noelle Thompson, Richard Simman
{"title":"Diagnostic Accuracy of Microsoft's Copilot Artificial Intelligence in Chronic Wound Assessment: A Comparative Study.","authors":"Kirollos Tadrousse, Catherine A Cash, Madhulika R Kastury, Noelle Thompson, Richard Simman","doi":"10.1097/GOX.0000000000006871","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Chronic wounds affect approximately 2.5% of the US population and can cause severe complications if not identified and treated promptly. Artificial intelligence tools such as Microsoft's Copilot have the potential to expedite diagnosis, but their clinical diagnostic accuracy remains underexplored.</p><p><strong>Methods: </strong>Ten chronic wound cases were selected from the publicly available database of the Silesian University of Technology. Images and demographic data were entered into Copilot, which generated the top 3 differential diagnoses for each case. Diagnostic accuracy was evaluated using a predefined scoring system. Statistical analysis included descriptive statistics, the Wilcoxon signed-rank test, bootstrapping, the Fisher-Pitman permutation test, Cohen kappa, and Fisher exact test.</p><p><strong>Results: </strong>Copilot correctly identified the primary diagnosis in 30% of cases and included the correct diagnosis within its top 3 differentials in 70% of cases. The mean diagnostic score was 1.7 (median: 2, SD: 1.25, variance: 1.57). The Wilcoxon test indicated no significant deviation from the median reference value (<i>P</i> = 0.6364), whereas bootstrapping yielded a 95% confidence interval of 1-4. The permutation test demonstrated a significant difference from the null hypothesis (<i>P</i> = 0.017), and the Cohen kappa revealed perfect agreement (kappa = 1, <i>P</i> = 0.00157). The Fisher exact test showed no significant association between primary and top 3 diagnostic accuracy (<i>P</i> = 0.20).</p><p><strong>Conclusions: </strong>Microsoft Copilot demonstrated limited diagnostic accuracy in chronic wound assessment, underscoring the need for cautious integration into clinical workflows. Broader datasets and more rigorous validation are crucial for enhancing artificial intelligence-supported diagnostics in wound care.</p>","PeriodicalId":20149,"journal":{"name":"Plastic and Reconstructive Surgery Global Open","volume":"13 6","pages":"e6871"},"PeriodicalIF":1.5000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12160731/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plastic and Reconstructive Surgery Global Open","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1097/GOX.0000000000006871","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"SURGERY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Chronic wounds affect approximately 2.5% of the US population and can cause severe complications if not identified and treated promptly. Artificial intelligence tools such as Microsoft's Copilot have the potential to expedite diagnosis, but their clinical diagnostic accuracy remains underexplored.
Methods: Ten chronic wound cases were selected from the publicly available database of the Silesian University of Technology. Images and demographic data were entered into Copilot, which generated the top 3 differential diagnoses for each case. Diagnostic accuracy was evaluated using a predefined scoring system. Statistical analysis included descriptive statistics, the Wilcoxon signed-rank test, bootstrapping, the Fisher-Pitman permutation test, Cohen kappa, and Fisher exact test.
Results: Copilot correctly identified the primary diagnosis in 30% of cases and included the correct diagnosis within its top 3 differentials in 70% of cases. The mean diagnostic score was 1.7 (median: 2, SD: 1.25, variance: 1.57). The Wilcoxon test indicated no significant deviation from the median reference value (P = 0.6364), whereas bootstrapping yielded a 95% confidence interval of 1-4. The permutation test demonstrated a significant difference from the null hypothesis (P = 0.017), and the Cohen kappa revealed perfect agreement (kappa = 1, P = 0.00157). The Fisher exact test showed no significant association between primary and top 3 diagnostic accuracy (P = 0.20).
Conclusions: Microsoft Copilot demonstrated limited diagnostic accuracy in chronic wound assessment, underscoring the need for cautious integration into clinical workflows. Broader datasets and more rigorous validation are crucial for enhancing artificial intelligence-supported diagnostics in wound care.
期刊介绍:
Plastic and Reconstructive Surgery—Global Open is an open access, peer reviewed, international journal focusing on global plastic and reconstructive surgery.Plastic and Reconstructive Surgery—Global Open publishes on all areas of plastic and reconstructive surgery, including basic science/experimental studies pertinent to the field and also clinical articles on such topics as: breast reconstruction, head and neck surgery, pediatric and craniofacial surgery, hand and microsurgery, wound healing, and cosmetic and aesthetic surgery. Clinical studies, experimental articles, ideas and innovations, and techniques and case reports are all welcome article types. Manuscript submission is open to all surgeons, researchers, and other health care providers world-wide who wish to communicate their research results on topics related to plastic and reconstructive surgery. Furthermore, Plastic and Reconstructive Surgery—Global Open, a complimentary journal to Plastic and Reconstructive Surgery, provides an open access venue for the publication of those research studies sponsored by private and public funding agencies that require open access publication of study results. Its mission is to disseminate high quality, peer reviewed research in plastic and reconstructive surgery to the widest possible global audience, through an open access platform. As an open access journal, Plastic and Reconstructive Surgery—Global Open offers its content for free to any viewer. Authors of articles retain their copyright to the materials published. Additionally, Plastic and Reconstructive Surgery—Global Open provides rapid review and publication of accepted papers.