Optimization of Textural and Structural Properties of Carbon Materials for Sodium Dual-Ion Battery Electrodes.

IF 4.2 2区 化学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Ignacio Cameán, Belén Lobato, Rachelle Omnée, Encarnación Raymundo-Piñero, Ana B García
{"title":"Optimization of Textural and Structural Properties of Carbon Materials for Sodium Dual-Ion Battery Electrodes.","authors":"Ignacio Cameán, Belén Lobato, Rachelle Omnée, Encarnación Raymundo-Piñero, Ana B García","doi":"10.3390/molecules30112439","DOIUrl":null,"url":null,"abstract":"<p><p>Sodium dual-ion batteries combine economic and environmental benefits by using carbon materials in both electrodes and sodium compounds in the electrolyte. Among other factors, their successful implementation for energy storage relies on optimization of the properties of the carbon electrode materials. To this end, carbon materials with a wide range of textural and structural properties were prepared by simply heat treating a single porous carbon in the absence or presence of a low-cost highly effective iron-based catalyst. These materials were investigated as anode or cathode in the sodium dual-ion batteries by prolonged galvanostatic cycling. The optimal textural and structural properties for carbon materials to achieve the best performance as electrodes in sodium dual-ion batteries were identified as having a high degree of graphitic structural order combined with minimal microporosity in the cathode and a non-graphitic structure with a layer spacing of around 0.37 nm and moderate microporosity in the anode.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":"30 11","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12156141/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/molecules30112439","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Sodium dual-ion batteries combine economic and environmental benefits by using carbon materials in both electrodes and sodium compounds in the electrolyte. Among other factors, their successful implementation for energy storage relies on optimization of the properties of the carbon electrode materials. To this end, carbon materials with a wide range of textural and structural properties were prepared by simply heat treating a single porous carbon in the absence or presence of a low-cost highly effective iron-based catalyst. These materials were investigated as anode or cathode in the sodium dual-ion batteries by prolonged galvanostatic cycling. The optimal textural and structural properties for carbon materials to achieve the best performance as electrodes in sodium dual-ion batteries were identified as having a high degree of graphitic structural order combined with minimal microporosity in the cathode and a non-graphitic structure with a layer spacing of around 0.37 nm and moderate microporosity in the anode.

钠双离子电池电极碳材料织构性能优化研究。
钠双离子电池通过在电极中使用碳材料和在电解质中使用钠化合物来结合经济和环境效益。除其他因素外,它们在储能方面的成功实施依赖于碳电极材料性能的优化。为此,在没有或存在低成本高效的铁基催化剂的情况下,通过简单地热处理单个多孔碳来制备具有多种结构和结构特性的碳材料。通过长时间的恒流循环,研究了这些材料作为钠双离子电池的正极或负极。碳材料作为钠双离子电池的电极,其最佳的结构和结构特性是具有高度的石墨结构有序且阴极微孔最小,而非石墨结构层间距约为0.37 nm且阳极微孔适中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecules
Molecules 化学-有机化学
CiteScore
7.40
自引率
8.70%
发文量
7524
审稿时长
1.4 months
期刊介绍: Molecules (ISSN 1420-3049, CODEN: MOLEFW) is an open access journal of synthetic organic chemistry and natural product chemistry. All articles are peer-reviewed and published continously upon acceptance. Molecules is published by MDPI, Basel, Switzerland. Our aim is to encourage chemists to publish as much as possible their experimental detail, particularly synthetic procedures and characterization information. There is no restriction on the length of the experimental section. In addition, availability of compound samples is published and considered as important information. Authors are encouraged to register or deposit their chemical samples through the non-profit international organization Molecular Diversity Preservation International (MDPI). Molecules has been launched in 1996 to preserve and exploit molecular diversity of both, chemical information and chemical substances.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信