Rami Schulzki, Matthias Apweiler, Caroline Röttger, Christoph W Grathwol, Nora Struchtrup, Sophia Abou El Mirate, Claus Normann, Stefan Bräse, Bernd L Fiebich
{"title":"Isomeric 3-Pyridinylmethylcoumarins Differ in Erk1/2-Inhibition and Modulation of BV2 Microglia-Mediated Neuroinflammation.","authors":"Rami Schulzki, Matthias Apweiler, Caroline Röttger, Christoph W Grathwol, Nora Struchtrup, Sophia Abou El Mirate, Claus Normann, Stefan Bräse, Bernd L Fiebich","doi":"10.3390/molecules30112452","DOIUrl":null,"url":null,"abstract":"<p><p>Coumarins are known for their multiple biological effects and have been established as anti-coagulative drugs for years. Furthermore, some coumarins can promote anti-inflammatory effects via the GPR55 receptor, and dual target coumarins have been synthesized. Anti-inflammatory drugs might be beneficial in the treatment of neuropsychiatric disorders, as the inflammatory hypothesis suggests. For the current study, we compared isomeric 3-pyridinylmethylcoumarins with altered N-atom position regarding their effects on cytokine and chemokine synthesis and expression in LPS-stimulated BV2 microglial cells. The 3-pyridin-4-yl-methylcoumarin showed the most potent anti-inflammatory effects, followed by the 3-pyridin-2-ylmethylcoumarin analog. The observed effects might be mediated by an inhibition of ERK phosphorylation.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":"30 11","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12156390/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/molecules30112452","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Coumarins are known for their multiple biological effects and have been established as anti-coagulative drugs for years. Furthermore, some coumarins can promote anti-inflammatory effects via the GPR55 receptor, and dual target coumarins have been synthesized. Anti-inflammatory drugs might be beneficial in the treatment of neuropsychiatric disorders, as the inflammatory hypothesis suggests. For the current study, we compared isomeric 3-pyridinylmethylcoumarins with altered N-atom position regarding their effects on cytokine and chemokine synthesis and expression in LPS-stimulated BV2 microglial cells. The 3-pyridin-4-yl-methylcoumarin showed the most potent anti-inflammatory effects, followed by the 3-pyridin-2-ylmethylcoumarin analog. The observed effects might be mediated by an inhibition of ERK phosphorylation.
期刊介绍:
Molecules (ISSN 1420-3049, CODEN: MOLEFW) is an open access journal of synthetic organic chemistry and natural product chemistry. All articles are peer-reviewed and published continously upon acceptance. Molecules is published by MDPI, Basel, Switzerland. Our aim is to encourage chemists to publish as much as possible their experimental detail, particularly synthetic procedures and characterization information. There is no restriction on the length of the experimental section. In addition, availability of compound samples is published and considered as important information. Authors are encouraged to register or deposit their chemical samples through the non-profit international organization Molecular Diversity Preservation International (MDPI). Molecules has been launched in 1996 to preserve and exploit molecular diversity of both, chemical information and chemical substances.