{"title":"Near-zero nonlinear error pressure sensor based on piezoresistor sensitivity matching for wind tunnel pressure test.","authors":"Yuanying Zhang, Fengyun Liu, Zechen Zhou, Xiubing Liang, Riming Sun, Jinjun Deng, Xiaoliang Luo, Jian Lin, Xing Chen, Xingxu Zhang, Jian Luo, Xiaojing Wang, Binghe Ma","doi":"10.1038/s41378-025-00959-7","DOIUrl":null,"url":null,"abstract":"<p><p>High-precision piezoresistive pressure sensors play a significant role in aerospace, automotive, and other fields. Nonlinear error is the key factor that restricts the improvement of the sensor precision. A mathematical model for evaluating the sensor's nonlinear error is established, based on which a piezoresistor sensitivity matching method is proposed to suppress the nonlinear error. By adjusting the piezoresistors' structure and position on the sensing membrane, four piezoresistors with equal sensitivity are obtained, and theoretical quasi-zero nonlinear error is achieved. To verify the design, sensor prototypes are fabricated utilizing the MEMS technology. After sensor packaging, a cylindrical absolute pressure sensor featuring a 4 mm diameter with a range from 0 to 100 kPa is acquired. The experimental results demonstrate the excellent performance of the proposed sensor, which indicates a nonlinear error as low as ±0.004%FS. Besides, the proposed sensor has a sensitivity of 1.6810 mV/kPa, a hysteresis of 0.025%, a repeatability of 0.015%, a zero drift of 0.03%FS, and a 3 dB frequency from 0 to 121.82 kHz. Moreover, the prototype is tested in the Mach 4 wind tunnel, and the measurement error between the proposed sensor and the true pressure is ±0.98%. This paper provides key sensing technology for high-precision surface pressure analysis of aircraft.</p>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":"11 1","pages":"122"},"PeriodicalIF":7.3000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12163088/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microsystems & Nanoengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41378-025-00959-7","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
High-precision piezoresistive pressure sensors play a significant role in aerospace, automotive, and other fields. Nonlinear error is the key factor that restricts the improvement of the sensor precision. A mathematical model for evaluating the sensor's nonlinear error is established, based on which a piezoresistor sensitivity matching method is proposed to suppress the nonlinear error. By adjusting the piezoresistors' structure and position on the sensing membrane, four piezoresistors with equal sensitivity are obtained, and theoretical quasi-zero nonlinear error is achieved. To verify the design, sensor prototypes are fabricated utilizing the MEMS technology. After sensor packaging, a cylindrical absolute pressure sensor featuring a 4 mm diameter with a range from 0 to 100 kPa is acquired. The experimental results demonstrate the excellent performance of the proposed sensor, which indicates a nonlinear error as low as ±0.004%FS. Besides, the proposed sensor has a sensitivity of 1.6810 mV/kPa, a hysteresis of 0.025%, a repeatability of 0.015%, a zero drift of 0.03%FS, and a 3 dB frequency from 0 to 121.82 kHz. Moreover, the prototype is tested in the Mach 4 wind tunnel, and the measurement error between the proposed sensor and the true pressure is ±0.98%. This paper provides key sensing technology for high-precision surface pressure analysis of aircraft.
期刊介绍:
Microsystems & Nanoengineering is a comprehensive online journal that focuses on the field of Micro and Nano Electro Mechanical Systems (MEMS and NEMS). It provides a platform for researchers to share their original research findings and review articles in this area. The journal covers a wide range of topics, from fundamental research to practical applications. Published by Springer Nature, in collaboration with the Aerospace Information Research Institute, Chinese Academy of Sciences, and with the support of the State Key Laboratory of Transducer Technology, it is an esteemed publication in the field. As an open access journal, it offers free access to its content, allowing readers from around the world to benefit from the latest developments in MEMS and NEMS.