Near-zero nonlinear error pressure sensor based on piezoresistor sensitivity matching for wind tunnel pressure test.

IF 7.3 1区 工程技术 Q1 INSTRUMENTS & INSTRUMENTATION
Yuanying Zhang, Fengyun Liu, Zechen Zhou, Xiubing Liang, Riming Sun, Jinjun Deng, Xiaoliang Luo, Jian Lin, Xing Chen, Xingxu Zhang, Jian Luo, Xiaojing Wang, Binghe Ma
{"title":"Near-zero nonlinear error pressure sensor based on piezoresistor sensitivity matching for wind tunnel pressure test.","authors":"Yuanying Zhang, Fengyun Liu, Zechen Zhou, Xiubing Liang, Riming Sun, Jinjun Deng, Xiaoliang Luo, Jian Lin, Xing Chen, Xingxu Zhang, Jian Luo, Xiaojing Wang, Binghe Ma","doi":"10.1038/s41378-025-00959-7","DOIUrl":null,"url":null,"abstract":"<p><p>High-precision piezoresistive pressure sensors play a significant role in aerospace, automotive, and other fields. Nonlinear error is the key factor that restricts the improvement of the sensor precision. A mathematical model for evaluating the sensor's nonlinear error is established, based on which a piezoresistor sensitivity matching method is proposed to suppress the nonlinear error. By adjusting the piezoresistors' structure and position on the sensing membrane, four piezoresistors with equal sensitivity are obtained, and theoretical quasi-zero nonlinear error is achieved. To verify the design, sensor prototypes are fabricated utilizing the MEMS technology. After sensor packaging, a cylindrical absolute pressure sensor featuring a 4 mm diameter with a range from 0 to 100 kPa is acquired. The experimental results demonstrate the excellent performance of the proposed sensor, which indicates a nonlinear error as low as ±0.004%FS. Besides, the proposed sensor has a sensitivity of 1.6810 mV/kPa, a hysteresis of 0.025%, a repeatability of 0.015%, a zero drift of 0.03%FS, and a 3 dB frequency from 0 to 121.82 kHz. Moreover, the prototype is tested in the Mach 4 wind tunnel, and the measurement error between the proposed sensor and the true pressure is ±0.98%. This paper provides key sensing technology for high-precision surface pressure analysis of aircraft.</p>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":"11 1","pages":"122"},"PeriodicalIF":7.3000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12163088/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microsystems & Nanoengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41378-025-00959-7","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

High-precision piezoresistive pressure sensors play a significant role in aerospace, automotive, and other fields. Nonlinear error is the key factor that restricts the improvement of the sensor precision. A mathematical model for evaluating the sensor's nonlinear error is established, based on which a piezoresistor sensitivity matching method is proposed to suppress the nonlinear error. By adjusting the piezoresistors' structure and position on the sensing membrane, four piezoresistors with equal sensitivity are obtained, and theoretical quasi-zero nonlinear error is achieved. To verify the design, sensor prototypes are fabricated utilizing the MEMS technology. After sensor packaging, a cylindrical absolute pressure sensor featuring a 4 mm diameter with a range from 0 to 100 kPa is acquired. The experimental results demonstrate the excellent performance of the proposed sensor, which indicates a nonlinear error as low as ±0.004%FS. Besides, the proposed sensor has a sensitivity of 1.6810 mV/kPa, a hysteresis of 0.025%, a repeatability of 0.015%, a zero drift of 0.03%FS, and a 3 dB frequency from 0 to 121.82 kHz. Moreover, the prototype is tested in the Mach 4 wind tunnel, and the measurement error between the proposed sensor and the true pressure is ±0.98%. This paper provides key sensing technology for high-precision surface pressure analysis of aircraft.

基于压阻灵敏度匹配的近零非线性误差风洞压力传感器。
高精度压阻式压力传感器在航空航天、汽车等领域发挥着重要作用。非线性误差是制约传感器精度提高的关键因素。建立了传感器非线性误差评估的数学模型,在此基础上提出了压阻灵敏度匹配抑制非线性误差的方法。通过调整压敏电阻的结构和在传感膜上的位置,得到了四个等灵敏度的压敏电阻,并实现了理论上的准零非线性误差。为了验证设计,利用MEMS技术制作了传感器原型。传感器封装完成后,得到直径为4mm,范围为0 ~ 100kpa的圆柱形绝对压力传感器。实验结果表明,该传感器具有良好的性能,非线性误差低至±0.004%FS。该传感器灵敏度为1.6810 mV/kPa,迟滞率为0.025%,重复性为0.015%,零漂移为0.03%FS,频率范围为0 ~ 121.82 kHz,频率范围为3 dB。并在4马赫风洞中对样机进行了测试,结果表明,该传感器与真实压力的测量误差为±0.98%。为高精度飞机表面压力分析提供了关键的传感技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Microsystems & Nanoengineering
Microsystems & Nanoengineering Materials Science-Materials Science (miscellaneous)
CiteScore
12.00
自引率
3.80%
发文量
123
审稿时长
20 weeks
期刊介绍: Microsystems & Nanoengineering is a comprehensive online journal that focuses on the field of Micro and Nano Electro Mechanical Systems (MEMS and NEMS). It provides a platform for researchers to share their original research findings and review articles in this area. The journal covers a wide range of topics, from fundamental research to practical applications. Published by Springer Nature, in collaboration with the Aerospace Information Research Institute, Chinese Academy of Sciences, and with the support of the State Key Laboratory of Transducer Technology, it is an esteemed publication in the field. As an open access journal, it offers free access to its content, allowing readers from around the world to benefit from the latest developments in MEMS and NEMS.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信