Synthesis of Mesoporous Alumina with High Specific Surface Area via Reverse Precipitation Method for Enhanced Adsorption and Regeneration of Congo Red.
{"title":"Synthesis of Mesoporous Alumina with High Specific Surface Area via Reverse Precipitation Method for Enhanced Adsorption and Regeneration of Congo Red.","authors":"Shuaiqi Chen, Ziqiang Zhao, Boning Jiang, Yuanchao Zhang, Xuhui Wang, Xiangyu Xu, Jiaqing Song","doi":"10.3390/ma18112656","DOIUrl":null,"url":null,"abstract":"<p><p>Various forms of alumina have attracted considerable attention for their ability to remove anionic dyes from wastewater, attributed to their high specific surface area, and environmental safety. In this study, a series of modified alumina materials were synthesized for the first time using the reverse precipitation method with dual aluminum sources and without template agent to explore their applicability in various scenarios, including adsorption processes and regeneration cycles. The results revealed that non-modified alumina exhibited superior adsorption properties, while silicon-modified alumina demonstrated exceptional thermal stability during high temperature calcination. For silicon-modified alumina, the replacement of some Al-OH groups with silicon resulted in the formation of a protective silicon layer on the alumina surface, which delayed the sintering process. The pseudo-second-order kinetic model and Langmuir model were utilized to fit the experimental data. Furthermore, the adsorption and regeneration properties of silicon-modified alumina were investigated, revealing a maximum equilibrium adsorption capacity of 822.6 mg/g for Congo Red using non-modified alumina. Notably, the non-modified alumina demonstrated a 40.6% increase in its adsorption capacity compared to its initial capacity after six regeneration cycles at 1000 °C.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"18 11","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12155924/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma18112656","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Various forms of alumina have attracted considerable attention for their ability to remove anionic dyes from wastewater, attributed to their high specific surface area, and environmental safety. In this study, a series of modified alumina materials were synthesized for the first time using the reverse precipitation method with dual aluminum sources and without template agent to explore their applicability in various scenarios, including adsorption processes and regeneration cycles. The results revealed that non-modified alumina exhibited superior adsorption properties, while silicon-modified alumina demonstrated exceptional thermal stability during high temperature calcination. For silicon-modified alumina, the replacement of some Al-OH groups with silicon resulted in the formation of a protective silicon layer on the alumina surface, which delayed the sintering process. The pseudo-second-order kinetic model and Langmuir model were utilized to fit the experimental data. Furthermore, the adsorption and regeneration properties of silicon-modified alumina were investigated, revealing a maximum equilibrium adsorption capacity of 822.6 mg/g for Congo Red using non-modified alumina. Notably, the non-modified alumina demonstrated a 40.6% increase in its adsorption capacity compared to its initial capacity after six regeneration cycles at 1000 °C.
期刊介绍:
Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.