Tomasz Miłek, Olga Orynycz, Jonas Matijošius, Karol Tucki, Ewa Kulesza, Edward Kozłowski, Andrzej Wasiak
{"title":"Research on Energy Management in Forward Extrusion Processes Based on Experiment and Finite Element Method Application.","authors":"Tomasz Miłek, Olga Orynycz, Jonas Matijošius, Karol Tucki, Ewa Kulesza, Edward Kozłowski, Andrzej Wasiak","doi":"10.3390/ma18112616","DOIUrl":null,"url":null,"abstract":"<p><p>This paper advances the forward extrusion process by integrating sustainable methodologies and optimizing energy efficiency. This research investigates the impact of die geometry and elongation coefficients on energy usage and process efficiency, employing finite element method (FEM) simulations alongside empirical analysis. Artificial neural networks and experimental data were utilized to predict process energy. The experimental study utilized flat, conical, and arc-shaped dies to extrude lead profiles exhibiting different elongation coefficients. The study analyzed the dynamics of material flow, energy requirements, and maximum forces. Patterns of deformation, distribution of tension, and losses of energy were discerned, with finite element models enhancing understanding of these phenomena. The mathematical framework forecasting the peak extrusion force in relation to elongation parameters was substantiated via residual diagnostics and regression analysis. The findings indicate that conical and arc dies can conserve up to 15% of the energy in comparison to flat dies, thereby improving material flow and reducing deformation forces. This comprehensive strategy provides practical solutions to reduce energy consumption and improve metal forming processes, thereby enhancing industrial efficiency and sustainability. The results not only benefit industry but also align with environmental objectives, thereby increasing the efficiency and sustainability of extrusion operations.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"18 11","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12155954/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma18112616","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This paper advances the forward extrusion process by integrating sustainable methodologies and optimizing energy efficiency. This research investigates the impact of die geometry and elongation coefficients on energy usage and process efficiency, employing finite element method (FEM) simulations alongside empirical analysis. Artificial neural networks and experimental data were utilized to predict process energy. The experimental study utilized flat, conical, and arc-shaped dies to extrude lead profiles exhibiting different elongation coefficients. The study analyzed the dynamics of material flow, energy requirements, and maximum forces. Patterns of deformation, distribution of tension, and losses of energy were discerned, with finite element models enhancing understanding of these phenomena. The mathematical framework forecasting the peak extrusion force in relation to elongation parameters was substantiated via residual diagnostics and regression analysis. The findings indicate that conical and arc dies can conserve up to 15% of the energy in comparison to flat dies, thereby improving material flow and reducing deformation forces. This comprehensive strategy provides practical solutions to reduce energy consumption and improve metal forming processes, thereby enhancing industrial efficiency and sustainability. The results not only benefit industry but also align with environmental objectives, thereby increasing the efficiency and sustainability of extrusion operations.
期刊介绍:
Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.