Zhixin Wang, Shaoping Wang, Wei Li, Bing Cao, Xiaojun Huang, Xin Chuai, Xinyu Zhang, Min Deng
{"title":"Methods for Quantitative Determination of Iron Sulfides in Rocks.","authors":"Zhixin Wang, Shaoping Wang, Wei Li, Bing Cao, Xiaojun Huang, Xin Chuai, Xinyu Zhang, Min Deng","doi":"10.3390/ma18112647","DOIUrl":null,"url":null,"abstract":"<p><p>When iron sulfides are used as aggregate in concrete production, it easily oxidizes to form harmful substances such as sulfates. This results in acid corrosion and internal sulfate attack (ISA), significantly reducing concrete durability. To date, the quantification methods for iron sulfides in aggregates remain inaccurate, often neglecting pyrrhotite (a type of iron sulfide). No standardized methods or threshold values for the sulfide content in aggregates have been established, nor have technical guidelines for the application of sulfide-containing aggregates, limiting their use. This study proposes an on-site quantification procedure for determining the pyrite and pyrrhotite content in tailings using a selective chemical dissolution process. An orthogonal experiment was designed to determine the optimal dissolution conditions by considering four factors: particle size, reaction temperature, acid concentration, and reaction time. The pyrrhotite quantification method showed a relative standard deviation (RSD) of 3.60% (<5%) and a mean relative error of 3.19% (<5%), while the pyrite quantification method showed an RSD of 3.11% (<5%) with a mean relative error of 4.70% (<5%). The results were further optimized under engineering conditions to reduce costs and enable on-site quantification without relying on complex precision instruments. The quantitative results of pyrite in mineral samples were verified by the XRD internal standard method, and the error was less than 0.6%. This approach ensures the effective monitoring and management of sulfide content in concrete aggregates, promoting the practical application of sulfur-bearing aggregates.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"18 11","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12156825/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma18112647","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
When iron sulfides are used as aggregate in concrete production, it easily oxidizes to form harmful substances such as sulfates. This results in acid corrosion and internal sulfate attack (ISA), significantly reducing concrete durability. To date, the quantification methods for iron sulfides in aggregates remain inaccurate, often neglecting pyrrhotite (a type of iron sulfide). No standardized methods or threshold values for the sulfide content in aggregates have been established, nor have technical guidelines for the application of sulfide-containing aggregates, limiting their use. This study proposes an on-site quantification procedure for determining the pyrite and pyrrhotite content in tailings using a selective chemical dissolution process. An orthogonal experiment was designed to determine the optimal dissolution conditions by considering four factors: particle size, reaction temperature, acid concentration, and reaction time. The pyrrhotite quantification method showed a relative standard deviation (RSD) of 3.60% (<5%) and a mean relative error of 3.19% (<5%), while the pyrite quantification method showed an RSD of 3.11% (<5%) with a mean relative error of 4.70% (<5%). The results were further optimized under engineering conditions to reduce costs and enable on-site quantification without relying on complex precision instruments. The quantitative results of pyrite in mineral samples were verified by the XRD internal standard method, and the error was less than 0.6%. This approach ensures the effective monitoring and management of sulfide content in concrete aggregates, promoting the practical application of sulfur-bearing aggregates.
期刊介绍:
Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.