{"title":"Electronic Correlations in Altermagnet MnTe in Hexagonal Crystal Structure.","authors":"Evgenii D Chernov, Alexey V Lukoyanov","doi":"10.3390/ma18112637","DOIUrl":null,"url":null,"abstract":"<p><p>In this article, we present the results of the first-principles study of altermagnet MnTe crystallized in the hexagonal-type crystal structure. Our theoretical calculations have been performed within density functional theory (DFT) and demonstrated that the altermagnetic phase of MnTe has the lowest total energy corresponding to the stable ground state. The calculations carried out accounting for electronic correlations in DFT+U resulted in significant changes in the electronic structure, as well as magnetic properties of altermagnet MnTe and the increased bandgap. In additional calculations with spin-orbit coupling and electronic correlations (DFT+U+SO), we showed that the bandgap is less than in the DFT+U calculations, but the electronic structure did not change noticeably. In addition, the investigated pressure effects for the compound under study revealed an insulator to metal transition under pressure for the hexagonal-type crystal structure. An experimental finding of a metallic state can be complicated by structural transitions into other phases, not considered in our study, which can occur at high pressures. Experimental measurements for MnTe above 40 GPa are required.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"18 11","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12156056/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma18112637","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this article, we present the results of the first-principles study of altermagnet MnTe crystallized in the hexagonal-type crystal structure. Our theoretical calculations have been performed within density functional theory (DFT) and demonstrated that the altermagnetic phase of MnTe has the lowest total energy corresponding to the stable ground state. The calculations carried out accounting for electronic correlations in DFT+U resulted in significant changes in the electronic structure, as well as magnetic properties of altermagnet MnTe and the increased bandgap. In additional calculations with spin-orbit coupling and electronic correlations (DFT+U+SO), we showed that the bandgap is less than in the DFT+U calculations, but the electronic structure did not change noticeably. In addition, the investigated pressure effects for the compound under study revealed an insulator to metal transition under pressure for the hexagonal-type crystal structure. An experimental finding of a metallic state can be complicated by structural transitions into other phases, not considered in our study, which can occur at high pressures. Experimental measurements for MnTe above 40 GPa are required.
期刊介绍:
Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.