Fei Zhu, Yongcheng Hang, Fenglai Wang, Shengbao Wang
{"title":"Compressive Behavior of Fully Grouted Concrete Bond Beam Block Masonry Prisms.","authors":"Fei Zhu, Yongcheng Hang, Fenglai Wang, Shengbao Wang","doi":"10.3390/ma18112589","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents a study on the uniaxial compressive behavior of fully grouted concrete bond beam block masonry prisms. A total of 45 (i.e., 9 hollow and 36 fully grouted) specimens were tested, and the failure modes and initial crack were reported. The effects of block strength, grout strength, and loading scheme on the compressive strength of the fully grouted prism were discussed. The results show that the compressive strength of bond beam block prisms increased with an increase in grouting, while they were less affected by the block strength; the peak strength of the grouted block masonry was, on average, 35.1% higher than the hollow masonry prism. In addition, although the specimens' strength was lower under cyclic compression than under monotonic compression loading, the difference in their specified compressive strength was statistically insignificant. The stress-strain curve of block masonry under uniaxial compression was also obtained. Through nonlinear fitting, the compressive stress-strain relationship of grouted masonry, considering masonry strength parameters, was established, which demonstrated alignment with prior experimental studies. This study not only provides a strength calculation method for grouted masonry structures using high-strength blocks in the code for the design of masonry structures in China but also offers a dedicated stress-strain curve for precise finite element analysis and the design of masonry structures.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"18 11","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12155600/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma18112589","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a study on the uniaxial compressive behavior of fully grouted concrete bond beam block masonry prisms. A total of 45 (i.e., 9 hollow and 36 fully grouted) specimens were tested, and the failure modes and initial crack were reported. The effects of block strength, grout strength, and loading scheme on the compressive strength of the fully grouted prism were discussed. The results show that the compressive strength of bond beam block prisms increased with an increase in grouting, while they were less affected by the block strength; the peak strength of the grouted block masonry was, on average, 35.1% higher than the hollow masonry prism. In addition, although the specimens' strength was lower under cyclic compression than under monotonic compression loading, the difference in their specified compressive strength was statistically insignificant. The stress-strain curve of block masonry under uniaxial compression was also obtained. Through nonlinear fitting, the compressive stress-strain relationship of grouted masonry, considering masonry strength parameters, was established, which demonstrated alignment with prior experimental studies. This study not only provides a strength calculation method for grouted masonry structures using high-strength blocks in the code for the design of masonry structures in China but also offers a dedicated stress-strain curve for precise finite element analysis and the design of masonry structures.
期刊介绍:
Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.