{"title":"Blackseed Oil Supplemented Caseinate-Carboxymethyl Chitosan Film Membrane for Improving Shelf Life of Grape Tomato.","authors":"Amal M A Mohamed, Hosahalli S Ramaswamy","doi":"10.3390/ma18112653","DOIUrl":null,"url":null,"abstract":"<p><p>Blackseed oil supplemented with caseinate (CA)-carboxymethyl chitosan (CMCH) composite membranes were evaluated for their functional properties and as edible coating for extending the shelf life of grape tomatoes. Composite films were prepared from equal parts of (CaCa or NaCa) and (CMCH) with or without supplemented 3% blackseed oil (BO) and evaluated for their functional properties. Subsequently, the edible membrane coating was evaluated to extend the shelf life of grape tomatoes (<i>Solanum lycopersicum</i> L.). The water vapor permeability (WVP) of the films was the lowest for the calcium caseinate-carboxymethyl chitosan-blackseed oil (CaCa-CMCH-BO) film (3.01 g kPa<sup>-1</sup> h<sup>-1</sup> m<sup>-2</sup>). Adding blackseed oil to the edible film matrix also led to a significant increase in its mechanical properties, resulting in tensile strength values of 12.5 MPa and 10.2 MPa and elongation at break values of 90.5% and 100% for NaCa-CMCH-BO and CaCa-CMCH-BO, respectively. The composite films also exhibited good compatibility through hydrogen bonding and hydrophobic interactions, as confirmed by FTIR spectroscopy. The particle size and zeta potential of CaCa-CMCM-BO were 117 nm and -40.73 mV, respectively, while for NaCa-CMCH-BO, they were 294.70 nm and -25.10 mV, respectively. The incorporation of BO into the films resulted in greater antioxidant activity. When applied as an edible film membrane on grape tomatoes, the coating effectively delayed the deterioration of tomatoes by reducing weight loss, microbial spoilage, and oxidative degradation. Compared to the control, the coated fruits had delayed ripening, with a shelf life of up to 30 days, and reduced microbial growth over the entire storage period.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"18 11","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12156821/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma18112653","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Blackseed oil supplemented with caseinate (CA)-carboxymethyl chitosan (CMCH) composite membranes were evaluated for their functional properties and as edible coating for extending the shelf life of grape tomatoes. Composite films were prepared from equal parts of (CaCa or NaCa) and (CMCH) with or without supplemented 3% blackseed oil (BO) and evaluated for their functional properties. Subsequently, the edible membrane coating was evaluated to extend the shelf life of grape tomatoes (Solanum lycopersicum L.). The water vapor permeability (WVP) of the films was the lowest for the calcium caseinate-carboxymethyl chitosan-blackseed oil (CaCa-CMCH-BO) film (3.01 g kPa-1 h-1 m-2). Adding blackseed oil to the edible film matrix also led to a significant increase in its mechanical properties, resulting in tensile strength values of 12.5 MPa and 10.2 MPa and elongation at break values of 90.5% and 100% for NaCa-CMCH-BO and CaCa-CMCH-BO, respectively. The composite films also exhibited good compatibility through hydrogen bonding and hydrophobic interactions, as confirmed by FTIR spectroscopy. The particle size and zeta potential of CaCa-CMCM-BO were 117 nm and -40.73 mV, respectively, while for NaCa-CMCH-BO, they were 294.70 nm and -25.10 mV, respectively. The incorporation of BO into the films resulted in greater antioxidant activity. When applied as an edible film membrane on grape tomatoes, the coating effectively delayed the deterioration of tomatoes by reducing weight loss, microbial spoilage, and oxidative degradation. Compared to the control, the coated fruits had delayed ripening, with a shelf life of up to 30 days, and reduced microbial growth over the entire storage period.
期刊介绍:
Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.