Fengjiao Ye, Te Zhu, Peng Zhang, Peng Kuang, Haibiao Wu, Xingzhong Cao
{"title":"Effect of Annealing on Vacancy-Type Defects and Heterogeneous Cu Precipitation Behavior in Fe<sub>60</sub>Cr<sub>12</sub>Mn<sub>8</sub>Cu<sub>15</sub>Mo<sub>3</sub>V<sub>2</sub> Alloy.","authors":"Fengjiao Ye, Te Zhu, Peng Zhang, Peng Kuang, Haibiao Wu, Xingzhong Cao","doi":"10.3390/ma18112613","DOIUrl":null,"url":null,"abstract":"<p><p>This study systematically investigates the evolution of vacancy-type defects and heterogeneous Cu nanoprecipitates in an Fe<sub>60</sub>Cr<sub>12</sub>Mn<sub>8</sub>Cu<sub>15</sub>Mo<sub>3</sub>V<sub>2</sub> (at%) multi-principal element alloy during thermal processing, utilizing Positron annihilation lifetime spectroscopy (PAS), coincidence Doppler broadening (CDB) spectroscopy, and transmission electron microscopy (TEM). The results show that the alloy exhibited a dual-phase coexistence structure of Body-Centered Cubic (BCC) and Face-Centered Cubic (FCC). The CDB results show that the density of heterogeneous Cu precipitates gradually increases with annealing temperature. Compared to the as-cast alloy, the precipitates annealed at 773 K exhibit a significantly reduced size (approximately 33 nm) with higher density. The PAS results demonstrate that gradual migration and aggregation of monovacancies at 573 K form vacancy clusters, while contraction and dissociation of these clusters dominate at 673 K. Within the temperature range of 773-973 K, the dynamic equilibrium between the aggregation and decomposition of vacancy clusters maintains stable annihilation characteristics with minimal lifetime changes.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"18 11","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12155920/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma18112613","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study systematically investigates the evolution of vacancy-type defects and heterogeneous Cu nanoprecipitates in an Fe60Cr12Mn8Cu15Mo3V2 (at%) multi-principal element alloy during thermal processing, utilizing Positron annihilation lifetime spectroscopy (PAS), coincidence Doppler broadening (CDB) spectroscopy, and transmission electron microscopy (TEM). The results show that the alloy exhibited a dual-phase coexistence structure of Body-Centered Cubic (BCC) and Face-Centered Cubic (FCC). The CDB results show that the density of heterogeneous Cu precipitates gradually increases with annealing temperature. Compared to the as-cast alloy, the precipitates annealed at 773 K exhibit a significantly reduced size (approximately 33 nm) with higher density. The PAS results demonstrate that gradual migration and aggregation of monovacancies at 573 K form vacancy clusters, while contraction and dissociation of these clusters dominate at 673 K. Within the temperature range of 773-973 K, the dynamic equilibrium between the aggregation and decomposition of vacancy clusters maintains stable annihilation characteristics with minimal lifetime changes.
期刊介绍:
Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.