Abdallah Derbalah, Felix Stader, Cong Liu, Adriana Zyla, Tariq Abdulla, Qier Wu, Masoud Jamei, Ian Gardner, Armin Sepp
{"title":"Cross-species translational modelling of targeted therapeutic oligonucleotides using physiologically based pharmacokinetics.","authors":"Abdallah Derbalah, Felix Stader, Cong Liu, Adriana Zyla, Tariq Abdulla, Qier Wu, Masoud Jamei, Ian Gardner, Armin Sepp","doi":"10.1007/s10928-025-09980-9","DOIUrl":null,"url":null,"abstract":"<p><p>Oligonucleotide therapeutics hold promise for targeted gene silencing, yet achieving optimal tissue-specific delivery remains challenging. This study introduces a mechanistic whole-body physiologically based pharmacokinetic (PBPK) model to predict tissue uptake dynamics of both conjugated (targeted) and unconjugated oligonucleotides across species. The model incorporates two uptake pathways: a non-saturable nonspecific pathway for all oligonucleotides and receptor-mediated endocytosis (RME) specific to conjugated molecules. Parameters for nonspecific uptake were derived from plasma and tissue concentration data of unconjugated antisense oligonucleotides (ASOs) in rats, while RME parameters for N-acetylgalactosamine (GalNAc)-conjugated oligonucleotides targeting the asialoglycoprotein receptor (ASGPR) were obtained from literature. Model validation against experimental data for conjugated and unconjugated ASOs and small interfering RNAs (siRNAs) in rats and mice demonstrated good predictive performance, with median predicted-to-observed AUC ratios of 0.84 (Interquartile range [IQR] 0.434-1.22) in rats and 0.629 (IQR 0.3-1.6) in mice. Local sensitivity analyses identified key parameters and processes influencing organ uptake, including the unbound plasma fraction and receptor-mediated uptake efficiency. Simulations highlighted the potential of sustained-release formulations to improve targeting specificity by mitigating receptor saturation. This is the first whole-body PBPK model to describe oligonucleotide pharmacokinetics across species and modalities. The model provides critical mechanistic insights to optimize tissue-specific delivery, guide formulation strategies, and enhance therapeutic outcomes for targeted oligonucleotide therapeutics.</p>","PeriodicalId":16851,"journal":{"name":"Journal of Pharmacokinetics and Pharmacodynamics","volume":"52 4","pages":"35"},"PeriodicalIF":2.2000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12162790/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pharmacokinetics and Pharmacodynamics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10928-025-09980-9","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Oligonucleotide therapeutics hold promise for targeted gene silencing, yet achieving optimal tissue-specific delivery remains challenging. This study introduces a mechanistic whole-body physiologically based pharmacokinetic (PBPK) model to predict tissue uptake dynamics of both conjugated (targeted) and unconjugated oligonucleotides across species. The model incorporates two uptake pathways: a non-saturable nonspecific pathway for all oligonucleotides and receptor-mediated endocytosis (RME) specific to conjugated molecules. Parameters for nonspecific uptake were derived from plasma and tissue concentration data of unconjugated antisense oligonucleotides (ASOs) in rats, while RME parameters for N-acetylgalactosamine (GalNAc)-conjugated oligonucleotides targeting the asialoglycoprotein receptor (ASGPR) were obtained from literature. Model validation against experimental data for conjugated and unconjugated ASOs and small interfering RNAs (siRNAs) in rats and mice demonstrated good predictive performance, with median predicted-to-observed AUC ratios of 0.84 (Interquartile range [IQR] 0.434-1.22) in rats and 0.629 (IQR 0.3-1.6) in mice. Local sensitivity analyses identified key parameters and processes influencing organ uptake, including the unbound plasma fraction and receptor-mediated uptake efficiency. Simulations highlighted the potential of sustained-release formulations to improve targeting specificity by mitigating receptor saturation. This is the first whole-body PBPK model to describe oligonucleotide pharmacokinetics across species and modalities. The model provides critical mechanistic insights to optimize tissue-specific delivery, guide formulation strategies, and enhance therapeutic outcomes for targeted oligonucleotide therapeutics.
期刊介绍:
Broadly speaking, the Journal of Pharmacokinetics and Pharmacodynamics covers the area of pharmacometrics. The journal is devoted to illustrating the importance of pharmacokinetics, pharmacodynamics, and pharmacometrics in drug development, clinical care, and the understanding of drug action. The journal publishes on a variety of topics related to pharmacometrics, including, but not limited to, clinical, experimental, and theoretical papers examining the kinetics of drug disposition and effects of drug action in humans, animals, in vitro, or in silico; modeling and simulation methodology, including optimal design; precision medicine; systems pharmacology; and mathematical pharmacology (including computational biology, bioengineering, and biophysics related to pharmacology, pharmacokinetics, orpharmacodynamics). Clinical papers that include population pharmacokinetic-pharmacodynamic relationships are welcome. The journal actively invites and promotes up-and-coming areas of pharmacometric research, such as real-world evidence, quality of life analyses, and artificial intelligence. The Journal of Pharmacokinetics and Pharmacodynamics is an official journal of the International Society of Pharmacometrics.