Jorden I Lane, Elida Nieves-Ortiz, Ornella Ndatabaye, Aliia R Fatkhullina, Sebastian Lopez, Terence S Dermody, Daria Esterházy
{"title":"Intestinal lymphatic vasculature is functionally adapted to different drainage regions and is altered by helminth infection.","authors":"Jorden I Lane, Elida Nieves-Ortiz, Ornella Ndatabaye, Aliia R Fatkhullina, Sebastian Lopez, Terence S Dermody, Daria Esterházy","doi":"10.1084/jem.20241181","DOIUrl":null,"url":null,"abstract":"<p><p>We sought to determine whether the lymphatic vasculature functionally adapts to the organ in which it resides, such as along the gut. Duodenal lymphatic capillaries (lacteals) displayed the most discontinuous tight junction composition within the gut, resulting in a dependence on duodenal lacteals for rapid dietary lipid uptake. Duodenal helminths abrogated these features. Parallel RNA sequencing of lymphatic endothelial cells and mucosa along the intestine revealed that the transcriptomes overlapped in functional profiles. RNA sequencing also identified a putative VEGFR-2/3 signaling gradient that may explain differences in lacteal tight junctions along the small intestine at homeostasis. Transcriptionally, helminth infection triggered antimicrobial and angiogenic responses. While microbial depletion acted additively to helminths on lymphatic restructuring, glucocorticoids partially reversed helminth-induced lacteal changes. This suggests helminths induce lymphangiogenesis and associated lymphatic \"zippering\" via inflammation. Our study uncovers and explains the superior lipid absorption by duodenal lacteals and how it is compromised by helminths and provides transcriptional insights into lymphatic function along the gut.</p>","PeriodicalId":15760,"journal":{"name":"Journal of Experimental Medicine","volume":"222 9","pages":""},"PeriodicalIF":12.6000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12162095/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1084/jem.20241181","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/12 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
We sought to determine whether the lymphatic vasculature functionally adapts to the organ in which it resides, such as along the gut. Duodenal lymphatic capillaries (lacteals) displayed the most discontinuous tight junction composition within the gut, resulting in a dependence on duodenal lacteals for rapid dietary lipid uptake. Duodenal helminths abrogated these features. Parallel RNA sequencing of lymphatic endothelial cells and mucosa along the intestine revealed that the transcriptomes overlapped in functional profiles. RNA sequencing also identified a putative VEGFR-2/3 signaling gradient that may explain differences in lacteal tight junctions along the small intestine at homeostasis. Transcriptionally, helminth infection triggered antimicrobial and angiogenic responses. While microbial depletion acted additively to helminths on lymphatic restructuring, glucocorticoids partially reversed helminth-induced lacteal changes. This suggests helminths induce lymphangiogenesis and associated lymphatic "zippering" via inflammation. Our study uncovers and explains the superior lipid absorption by duodenal lacteals and how it is compromised by helminths and provides transcriptional insights into lymphatic function along the gut.
期刊介绍:
Since its establishment in 1896, the Journal of Experimental Medicine (JEM) has steadfastly pursued the publication of enduring and exceptional studies in medical biology. In an era where numerous publishing groups are introducing specialized journals, we recognize the importance of offering a distinguished platform for studies that seamlessly integrate various disciplines within the pathogenesis field.
Our unique editorial system, driven by a commitment to exceptional author service, involves two collaborative groups of editors: professional editors with robust scientific backgrounds and full-time practicing scientists. Each paper undergoes evaluation by at least one editor from both groups before external review. Weekly editorial meetings facilitate comprehensive discussions on papers, incorporating external referee comments, and ensure swift decisions without unnecessary demands for extensive revisions.
Encompassing human studies and diverse in vivo experimental models of human disease, our focus within medical biology spans genetics, inflammation, immunity, infectious disease, cancer, vascular biology, metabolic disorders, neuroscience, and stem cell biology. We eagerly welcome reports ranging from atomic-level analyses to clinical interventions that unveil new mechanistic insights.