Yoki Nakamura, Manaya Nakano, Kazue Hisaoka-Nakashima, Norimitsu Morioka
{"title":"Aging-related dysregulation of energy metabolism and mitochondrial dynamics in microglia.","authors":"Yoki Nakamura, Manaya Nakano, Kazue Hisaoka-Nakashima, Norimitsu Morioka","doi":"10.3164/jcbn.24-202","DOIUrl":null,"url":null,"abstract":"<p><p>Microglia, the primary immune cells of the central nervous system, play a pivotal role in maintaining brain homeostasis. Recent studies have highlighted the involvement of microglial dysfunction in the pathogenesis of various age-related neurodegenerative diseases, such as Alzheimer's disease. Moreover, the metabolic state of microglia has emerged as a key factor in these diseases. Interestingly, aging and neurodegenerative diseases are associated with impaired mitochondrial function and a metabolic shift from oxidative phosphorylation to glycolysis in microglia. This metabolic shift may contribute to sustained microglial activation and neuroinflammation. Furthermore, the leakage of mitochondrial DNA into the cytoplasm, because of mitochondrial dysfunction, has been implicated in triggering inflammatory responses and disrupting brain function. This review summarizes recent advances in understanding the role of microglial metabolic shifts, particularly glycolysis, and mitochondrial dysfunction. It also explores the potential of targeting microglial metabolism, for instance by modulating mitophagy or intervening in specific metabolic pathways, as a novel therapeutic approach for changes in brain function and neurodegenerative diseases associated with aging.</p>","PeriodicalId":15429,"journal":{"name":"Journal of Clinical Biochemistry and Nutrition","volume":"76 3","pages":"239-244"},"PeriodicalIF":2.0000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12152248/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Biochemistry and Nutrition","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3164/jcbn.24-202","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/11 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"NUTRITION & DIETETICS","Score":null,"Total":0}
引用次数: 0
Abstract
Microglia, the primary immune cells of the central nervous system, play a pivotal role in maintaining brain homeostasis. Recent studies have highlighted the involvement of microglial dysfunction in the pathogenesis of various age-related neurodegenerative diseases, such as Alzheimer's disease. Moreover, the metabolic state of microglia has emerged as a key factor in these diseases. Interestingly, aging and neurodegenerative diseases are associated with impaired mitochondrial function and a metabolic shift from oxidative phosphorylation to glycolysis in microglia. This metabolic shift may contribute to sustained microglial activation and neuroinflammation. Furthermore, the leakage of mitochondrial DNA into the cytoplasm, because of mitochondrial dysfunction, has been implicated in triggering inflammatory responses and disrupting brain function. This review summarizes recent advances in understanding the role of microglial metabolic shifts, particularly glycolysis, and mitochondrial dysfunction. It also explores the potential of targeting microglial metabolism, for instance by modulating mitophagy or intervening in specific metabolic pathways, as a novel therapeutic approach for changes in brain function and neurodegenerative diseases associated with aging.
期刊介绍:
Journal of Clinical Biochemistry and Nutrition (JCBN) is
an international, interdisciplinary publication encompassing
chemical, biochemical, physiological, pathological, toxicological and medical approaches to research on lipid peroxidation, free radicals, oxidative stress and nutrition. The
Journal welcomes original contributions dealing with all
aspects of clinical biochemistry and clinical nutrition
including both in vitro and in vivo studies.