Haonan Qiao, Qingchao Zeng, Francis Martin, Qi Wang
{"title":"Impact of the soil layer on the soil microbial diversity and composition of <i>Pinus yunnanensis</i> at the Ailao Mountains subtropical forest.","authors":"Haonan Qiao, Qingchao Zeng, Francis Martin, Qi Wang","doi":"10.3389/fmicb.2025.1558906","DOIUrl":null,"url":null,"abstract":"<p><p>Microbial communities residing in forest soils play crucial roles in decomposing organic matter and recycling nutrients, making these ecosystems one of the most diverse habitats on Earth. However, the composition and function of these complex and diverse microbiomes across different soil layers remain largely unknown. In this study, we collected soil samples from various layers and analysed the bacterial and fungal community compositions in experimental forest ecosystems using sequencing techniques. Our findings revealed that the soil layer was the primary factor influencing microbial communities, whereas sampling season had only a marginal effect. The most prevalent bacterial phyla and fungal classes were Acidobacteria, Actinobacteria, Armatimonadetes, Bacteroidetes, Firmicutes, Planctomycetes, Proteobacteria, Verrucomicrobia, and Agaricomycetes. Owing to the heterogeneity of the soil layer environment, we observed distinct patterns in the bacterial and fungal microbiomes across different layers. Moreover, the soil layer affected the network complexity, with fungi exhibiting higher complexity in the upper layer, whereas bacteria showed the opposite trend. Additionally, the dominant bacterial and fungal taxa across all soil layers belonged predominantly to Acidobacteria and Agaricomycetes, respectively. These findings underscore the significance of soil layers in shaping soil microbial communities and highlight the composition and co-occurrence patterns of the microbial communities within these layers.</p>","PeriodicalId":12466,"journal":{"name":"Frontiers in Microbiology","volume":"16 ","pages":"1558906"},"PeriodicalIF":4.0000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12159057/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fmicb.2025.1558906","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Microbial communities residing in forest soils play crucial roles in decomposing organic matter and recycling nutrients, making these ecosystems one of the most diverse habitats on Earth. However, the composition and function of these complex and diverse microbiomes across different soil layers remain largely unknown. In this study, we collected soil samples from various layers and analysed the bacterial and fungal community compositions in experimental forest ecosystems using sequencing techniques. Our findings revealed that the soil layer was the primary factor influencing microbial communities, whereas sampling season had only a marginal effect. The most prevalent bacterial phyla and fungal classes were Acidobacteria, Actinobacteria, Armatimonadetes, Bacteroidetes, Firmicutes, Planctomycetes, Proteobacteria, Verrucomicrobia, and Agaricomycetes. Owing to the heterogeneity of the soil layer environment, we observed distinct patterns in the bacterial and fungal microbiomes across different layers. Moreover, the soil layer affected the network complexity, with fungi exhibiting higher complexity in the upper layer, whereas bacteria showed the opposite trend. Additionally, the dominant bacterial and fungal taxa across all soil layers belonged predominantly to Acidobacteria and Agaricomycetes, respectively. These findings underscore the significance of soil layers in shaping soil microbial communities and highlight the composition and co-occurrence patterns of the microbial communities within these layers.
期刊介绍:
Frontiers in Microbiology is a leading journal in its field, publishing rigorously peer-reviewed research across the entire spectrum of microbiology. Field Chief Editor Martin G. Klotz at Washington State University is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.