Carbon dots-based drug delivery for bone regeneration.

IF 4.3 3区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Frontiers in Bioengineering and Biotechnology Pub Date : 2025-05-29 eCollection Date: 2025-01-01 DOI:10.3389/fbioe.2025.1613901
Christy Liu, Yingzi Li, Xiaohua Liu
{"title":"Carbon dots-based drug delivery for bone regeneration.","authors":"Christy Liu, Yingzi Li, Xiaohua Liu","doi":"10.3389/fbioe.2025.1613901","DOIUrl":null,"url":null,"abstract":"<p><p>Carbon dots (CDs) are a class of nanobiomaterials with significant potential in bone regeneration. Their excellent biocompatibility, tunable fluorescence, high stability, low toxicity, and abundant functional groups make CDs promising candidates for efficient drug delivery and bone tissue regeneration. CDs contribute to targeted drug release, enhance osteogenic differentiation, and interact with cellular components to facilitate bone formation. Recent research highlights the roles of CDs in scaffold-based approaches, offering controlled drug delivery and real-time bioimaging capabilities. This review provides a comprehensive overview of CDs in bone regeneration, with a focus on their synthesis, functionalization, and biomedical applications. It begins by exploring CD synthesis methods, physicochemical properties, and mechanisms of action. Next, it discusses CD-based drug delivery systems and their applications in bone regeneration. Finally, the review highlights the challenges and future perspectives in optimizing CDs for enhanced therapeutic outcomes.</p>","PeriodicalId":12444,"journal":{"name":"Frontiers in Bioengineering and Biotechnology","volume":"13 ","pages":"1613901"},"PeriodicalIF":4.3000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12159073/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Bioengineering and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3389/fbioe.2025.1613901","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Carbon dots (CDs) are a class of nanobiomaterials with significant potential in bone regeneration. Their excellent biocompatibility, tunable fluorescence, high stability, low toxicity, and abundant functional groups make CDs promising candidates for efficient drug delivery and bone tissue regeneration. CDs contribute to targeted drug release, enhance osteogenic differentiation, and interact with cellular components to facilitate bone formation. Recent research highlights the roles of CDs in scaffold-based approaches, offering controlled drug delivery and real-time bioimaging capabilities. This review provides a comprehensive overview of CDs in bone regeneration, with a focus on their synthesis, functionalization, and biomedical applications. It begins by exploring CD synthesis methods, physicochemical properties, and mechanisms of action. Next, it discusses CD-based drug delivery systems and their applications in bone regeneration. Finally, the review highlights the challenges and future perspectives in optimizing CDs for enhanced therapeutic outcomes.

基于碳点的骨再生药物输送。
碳点(cd)是一类具有骨再生潜力的纳米生物材料。其优异的生物相容性、可调荧光、高稳定性、低毒性和丰富的官能团使CDs成为高效药物传递和骨组织再生的有希望的候选者。CDs有助于靶向药物释放,增强成骨分化,并与细胞成分相互作用,促进骨形成。最近的研究强调了CDs在基于支架的方法中的作用,提供了受控的药物输送和实时生物成像能力。本文综述了cd在骨再生中的应用,重点介绍了它们的合成、功能化和生物医学应用。它从探索CD的合成方法、物理化学性质和作用机制开始。接下来,讨论了基于cd的药物输送系统及其在骨再生中的应用。最后,综述强调了优化cd以提高治疗效果的挑战和未来前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Bioengineering and Biotechnology
Frontiers in Bioengineering and Biotechnology Chemical Engineering-Bioengineering
CiteScore
8.30
自引率
5.30%
发文量
2270
审稿时长
12 weeks
期刊介绍: The translation of new discoveries in medicine to clinical routine has never been easy. During the second half of the last century, thanks to the progress in chemistry, biochemistry and pharmacology, we have seen the development and the application of a large number of drugs and devices aimed at the treatment of symptoms, blocking unwanted pathways and, in the case of infectious diseases, fighting the micro-organisms responsible. However, we are facing, today, a dramatic change in the therapeutic approach to pathologies and diseases. Indeed, the challenge of the present and the next decade is to fully restore the physiological status of the diseased organism and to completely regenerate tissue and organs when they are so seriously affected that treatments cannot be limited to the repression of symptoms or to the repair of damage. This is being made possible thanks to the major developments made in basic cell and molecular biology, including stem cell science, growth factor delivery, gene isolation and transfection, the advances in bioengineering and nanotechnology, including development of new biomaterials, biofabrication technologies and use of bioreactors, and the big improvements in diagnostic tools and imaging of cells, tissues and organs. In today`s world, an enhancement of communication between multidisciplinary experts, together with the promotion of joint projects and close collaborations among scientists, engineers, industry people, regulatory agencies and physicians are absolute requirements for the success of any attempt to develop and clinically apply a new biological therapy or an innovative device involving the collective use of biomaterials, cells and/or bioactive molecules. “Frontiers in Bioengineering and Biotechnology” aspires to be a forum for all people involved in the process by bridging the gap too often existing between a discovery in the basic sciences and its clinical application.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信