{"title":"Carbon dots-based drug delivery for bone regeneration.","authors":"Christy Liu, Yingzi Li, Xiaohua Liu","doi":"10.3389/fbioe.2025.1613901","DOIUrl":null,"url":null,"abstract":"<p><p>Carbon dots (CDs) are a class of nanobiomaterials with significant potential in bone regeneration. Their excellent biocompatibility, tunable fluorescence, high stability, low toxicity, and abundant functional groups make CDs promising candidates for efficient drug delivery and bone tissue regeneration. CDs contribute to targeted drug release, enhance osteogenic differentiation, and interact with cellular components to facilitate bone formation. Recent research highlights the roles of CDs in scaffold-based approaches, offering controlled drug delivery and real-time bioimaging capabilities. This review provides a comprehensive overview of CDs in bone regeneration, with a focus on their synthesis, functionalization, and biomedical applications. It begins by exploring CD synthesis methods, physicochemical properties, and mechanisms of action. Next, it discusses CD-based drug delivery systems and their applications in bone regeneration. Finally, the review highlights the challenges and future perspectives in optimizing CDs for enhanced therapeutic outcomes.</p>","PeriodicalId":12444,"journal":{"name":"Frontiers in Bioengineering and Biotechnology","volume":"13 ","pages":"1613901"},"PeriodicalIF":4.3000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12159073/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Bioengineering and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3389/fbioe.2025.1613901","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Carbon dots (CDs) are a class of nanobiomaterials with significant potential in bone regeneration. Their excellent biocompatibility, tunable fluorescence, high stability, low toxicity, and abundant functional groups make CDs promising candidates for efficient drug delivery and bone tissue regeneration. CDs contribute to targeted drug release, enhance osteogenic differentiation, and interact with cellular components to facilitate bone formation. Recent research highlights the roles of CDs in scaffold-based approaches, offering controlled drug delivery and real-time bioimaging capabilities. This review provides a comprehensive overview of CDs in bone regeneration, with a focus on their synthesis, functionalization, and biomedical applications. It begins by exploring CD synthesis methods, physicochemical properties, and mechanisms of action. Next, it discusses CD-based drug delivery systems and their applications in bone regeneration. Finally, the review highlights the challenges and future perspectives in optimizing CDs for enhanced therapeutic outcomes.
期刊介绍:
The translation of new discoveries in medicine to clinical routine has never been easy. During the second half of the last century, thanks to the progress in chemistry, biochemistry and pharmacology, we have seen the development and the application of a large number of drugs and devices aimed at the treatment of symptoms, blocking unwanted pathways and, in the case of infectious diseases, fighting the micro-organisms responsible. However, we are facing, today, a dramatic change in the therapeutic approach to pathologies and diseases. Indeed, the challenge of the present and the next decade is to fully restore the physiological status of the diseased organism and to completely regenerate tissue and organs when they are so seriously affected that treatments cannot be limited to the repression of symptoms or to the repair of damage. This is being made possible thanks to the major developments made in basic cell and molecular biology, including stem cell science, growth factor delivery, gene isolation and transfection, the advances in bioengineering and nanotechnology, including development of new biomaterials, biofabrication technologies and use of bioreactors, and the big improvements in diagnostic tools and imaging of cells, tissues and organs.
In today`s world, an enhancement of communication between multidisciplinary experts, together with the promotion of joint projects and close collaborations among scientists, engineers, industry people, regulatory agencies and physicians are absolute requirements for the success of any attempt to develop and clinically apply a new biological therapy or an innovative device involving the collective use of biomaterials, cells and/or bioactive molecules. “Frontiers in Bioengineering and Biotechnology” aspires to be a forum for all people involved in the process by bridging the gap too often existing between a discovery in the basic sciences and its clinical application.