Genomic Insights into the Phosphatidylinositol-Specific Phospholipase C Gene Family in Leishmania major and Leishmania infantum: Expression Patterns and Potential Association with Drug Resistance.
{"title":"Genomic Insights into the Phosphatidylinositol-Specific Phospholipase C Gene Family in <i>Leishmania major</i> and <i>Leishmania infantum</i>: Expression Patterns and Potential Association with Drug Resistance.","authors":"Serhat Sirekbasan, Samatar Samaleh Osman, Tuğba Gürkök-Tan","doi":"10.3390/diagnostics15111433","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background/Objectives</b>: Timely and effective clinical management of leishmaniasis depends on a deep understanding of parasite biology and drug resistance mechanisms. Phosphatidylinositol-specific phospholipase C (PI-PLC) enzymes are critical for parasite survival and immune evasion and possibly influence treatment outcomes. This study aimed to characterize the PI-PLC gene family in the <i>Leishmania infantum</i> and <i>Leishmania major</i> genomes, with a focus on their expression profiles in antimony-susceptible and -resistant strains to uncover their diagnostic and prognostic relevance. <b>Methods</b>: This study conducted a comprehensive genome-wide screening to identify PI-PLC genes in <i>L. infantum</i> and <i>L. major</i>, followed by detailed analyses of their gene structures, conserved motifs, chromosomal localization, and phylogenetic relationships. To explore potential roles in drug resistance and clinical prognosis, RNA-seq data from antimony-resistant and -susceptible <i>L. infantum</i> strains were analyzed for differential gene expression. <b>Results</b>: Twenty-two PI-PLC genes were identified in each species, displaying conserved catalytic domains and diverse biochemical characteristics. Phylogenetic and chromosomal analyses revealed gene clustering and distribution patterns. Importantly, expression profiling highlighted several PI-PLC genes with differential regulation in resistant strains, suggesting a role in treatment response and potential as molecular markers. <b>Conclusions</b>: Our findings suggest that PI-PLC genes may be associated with drug susceptibility in <i>L. infantum</i>, warranting further functional investigation to validate their role as potential molecular markers.</p>","PeriodicalId":11225,"journal":{"name":"Diagnostics","volume":"15 11","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12155177/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/diagnostics15111433","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background/Objectives: Timely and effective clinical management of leishmaniasis depends on a deep understanding of parasite biology and drug resistance mechanisms. Phosphatidylinositol-specific phospholipase C (PI-PLC) enzymes are critical for parasite survival and immune evasion and possibly influence treatment outcomes. This study aimed to characterize the PI-PLC gene family in the Leishmania infantum and Leishmania major genomes, with a focus on their expression profiles in antimony-susceptible and -resistant strains to uncover their diagnostic and prognostic relevance. Methods: This study conducted a comprehensive genome-wide screening to identify PI-PLC genes in L. infantum and L. major, followed by detailed analyses of their gene structures, conserved motifs, chromosomal localization, and phylogenetic relationships. To explore potential roles in drug resistance and clinical prognosis, RNA-seq data from antimony-resistant and -susceptible L. infantum strains were analyzed for differential gene expression. Results: Twenty-two PI-PLC genes were identified in each species, displaying conserved catalytic domains and diverse biochemical characteristics. Phylogenetic and chromosomal analyses revealed gene clustering and distribution patterns. Importantly, expression profiling highlighted several PI-PLC genes with differential regulation in resistant strains, suggesting a role in treatment response and potential as molecular markers. Conclusions: Our findings suggest that PI-PLC genes may be associated with drug susceptibility in L. infantum, warranting further functional investigation to validate their role as potential molecular markers.
DiagnosticsBiochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
4.70
自引率
8.30%
发文量
2699
审稿时长
19.64 days
期刊介绍:
Diagnostics (ISSN 2075-4418) is an international scholarly open access journal on medical diagnostics. It publishes original research articles, reviews, communications and short notes on the research and development of medical diagnostics. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodological details must be provided for research articles.