Alice Griffiths, Palita Udomjarumanee, Andrei-Stefan Georgescu, Muruj Barri, Dmitry A Zinovkin, Md Zahidul I Pranjol
{"title":"The Immunomodulatory Role of Galectin-1 in the Tumour Microenvironment and Strategies for Therapeutic Applications.","authors":"Alice Griffiths, Palita Udomjarumanee, Andrei-Stefan Georgescu, Muruj Barri, Dmitry A Zinovkin, Md Zahidul I Pranjol","doi":"10.3390/cancers17111888","DOIUrl":null,"url":null,"abstract":"<p><p>With the morbidity of cancer currently on a perpetual rise, there is a critical need for new treatment options. Current therapeutic options, such as chemotherapy and radiotherapy, are frequently employed; however, the high rate of recurrence underscores the incomplete understanding of tumour growth, progression, and the intricacies of their microenvironments. In this study, we review the roles that galectin-1 (Gal1) plays in suppressing immune surveillance in the tumour microenvironment. Studies have shown that Gal1 changes the immune system parameters: suppressing T cell function, sensitising resting T lymphocytes to Fas/FasL, decreasing cell proliferation, reducing adhesion to extracellular matrix, inhibiting Th1 cytokines, increasing M2 phenotype macrophages, and promoting angiogenesis. Gal1 has garnered increasing attention as a potential therapeutic target due to its involvement in tumour progression and immune evasion. Given the limitations and toxic side effects associated with current treatment options, alternative strategies targeting Gal1 have been explored for their therapeutic potential. Approaches such as OTX008, anti-Gal1 monoclonal antibodies, and Gal1-targeted vaccines have demonstrated the ability to downregulate tumour progression by inhibiting Gal1 activity. These findings highlight the therapeutic promise of Gal1 not only as a novel target for cancer therapy but also as a potential prognostic biomarker, offering opportunities for the development of more effective and less toxic treatment strategies.</p>","PeriodicalId":9681,"journal":{"name":"Cancers","volume":"17 11","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12153884/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancers","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/cancers17111888","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
With the morbidity of cancer currently on a perpetual rise, there is a critical need for new treatment options. Current therapeutic options, such as chemotherapy and radiotherapy, are frequently employed; however, the high rate of recurrence underscores the incomplete understanding of tumour growth, progression, and the intricacies of their microenvironments. In this study, we review the roles that galectin-1 (Gal1) plays in suppressing immune surveillance in the tumour microenvironment. Studies have shown that Gal1 changes the immune system parameters: suppressing T cell function, sensitising resting T lymphocytes to Fas/FasL, decreasing cell proliferation, reducing adhesion to extracellular matrix, inhibiting Th1 cytokines, increasing M2 phenotype macrophages, and promoting angiogenesis. Gal1 has garnered increasing attention as a potential therapeutic target due to its involvement in tumour progression and immune evasion. Given the limitations and toxic side effects associated with current treatment options, alternative strategies targeting Gal1 have been explored for their therapeutic potential. Approaches such as OTX008, anti-Gal1 monoclonal antibodies, and Gal1-targeted vaccines have demonstrated the ability to downregulate tumour progression by inhibiting Gal1 activity. These findings highlight the therapeutic promise of Gal1 not only as a novel target for cancer therapy but also as a potential prognostic biomarker, offering opportunities for the development of more effective and less toxic treatment strategies.
期刊介绍:
Cancers (ISSN 2072-6694) is an international, peer-reviewed open access journal on oncology. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.