{"title":"Effectiveness of Artificial Intelligence Models in Predicting Lung Cancer Recurrence: A Gene Biomarker-Driven Review.","authors":"Niloufar Pourakbar, Alireza Motamedi, Mahta Pashapour, Mohammad Emad Sharifi, Seyedemad Seyedgholami Sharabiani, Asra Fazlollahi, Hamid Abdollahi, Arman Rahmim, Sahar Rezaei","doi":"10.3390/cancers17111892","DOIUrl":null,"url":null,"abstract":"<p><strong>Background/objectives: </strong>Lung cancer recurrence, particularly in NSCLC, remains a major challenge, with 30-70% of patients relapsing post-treatment. Traditional predictors like TNM staging and histopathology fail to account for tumor heterogeneity and immune dynamics. This review evaluates AI models integrating gene biomarkers (TP53, KRAS, FOXP3, PD-L1, and CD8) to enhance the recurrence prediction and improve the personalized risk stratification.</p><p><strong>Methods: </strong>Following the PRISMA guidelines, we systematically reviewed AI-driven recurrence prediction models for lung cancer, focusing on genomic biomarkers. Studies were selected based on predefined criteria, emphasizing AI/ML approaches integrating gene expression, radiomics, and clinical data. Data extraction covered the study design, AI algorithms (e.g., neural networks, SVM, and gradient boosting), performance metrics (AUC and sensitivity), and clinical applicability. Two reviewers independently screened and assessed studies to ensure accuracy and minimize bias.</p><p><strong>Results: </strong>A literature analysis of 18 studies (2019-2024) from 14 countries, covering 4861 NSCLC and small cell lung cancer patients, showed that AI models outperformed conventional methods. AI achieved AUCs of 0.73-0.92 compared to 0.61 for TNM staging. Multi-modal approaches integrating gene expression (PDIA3 and MYH11), radiomics, and clinical data improved accuracy, with SVM-based models reaching a 92% AUC. Key predictors included immune-related signatures (e.g., tumor-infiltrating NK cells and PD-L1 expression) and pathway alterations (NF-κB and JAK-STAT). However, small cohorts (41-1348 patients), data heterogeneity, and limited external validation remained challenges.</p><p><strong>Conclusions: </strong>AI-driven models hold potential for recurrence prediction and guiding adjuvant therapies in high-risk NSCLC patients. Expanding multi-institutional datasets, standardizing validation, and improving clinical integration are crucial for real-world adoption. Optimizing biomarker panels and using AI trustworthily and ethically could enhance precision oncology, enabling early, tailored interventions to reduce mortality.</p>","PeriodicalId":9681,"journal":{"name":"Cancers","volume":"17 11","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12153899/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancers","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/cancers17111892","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background/objectives: Lung cancer recurrence, particularly in NSCLC, remains a major challenge, with 30-70% of patients relapsing post-treatment. Traditional predictors like TNM staging and histopathology fail to account for tumor heterogeneity and immune dynamics. This review evaluates AI models integrating gene biomarkers (TP53, KRAS, FOXP3, PD-L1, and CD8) to enhance the recurrence prediction and improve the personalized risk stratification.
Methods: Following the PRISMA guidelines, we systematically reviewed AI-driven recurrence prediction models for lung cancer, focusing on genomic biomarkers. Studies were selected based on predefined criteria, emphasizing AI/ML approaches integrating gene expression, radiomics, and clinical data. Data extraction covered the study design, AI algorithms (e.g., neural networks, SVM, and gradient boosting), performance metrics (AUC and sensitivity), and clinical applicability. Two reviewers independently screened and assessed studies to ensure accuracy and minimize bias.
Results: A literature analysis of 18 studies (2019-2024) from 14 countries, covering 4861 NSCLC and small cell lung cancer patients, showed that AI models outperformed conventional methods. AI achieved AUCs of 0.73-0.92 compared to 0.61 for TNM staging. Multi-modal approaches integrating gene expression (PDIA3 and MYH11), radiomics, and clinical data improved accuracy, with SVM-based models reaching a 92% AUC. Key predictors included immune-related signatures (e.g., tumor-infiltrating NK cells and PD-L1 expression) and pathway alterations (NF-κB and JAK-STAT). However, small cohorts (41-1348 patients), data heterogeneity, and limited external validation remained challenges.
Conclusions: AI-driven models hold potential for recurrence prediction and guiding adjuvant therapies in high-risk NSCLC patients. Expanding multi-institutional datasets, standardizing validation, and improving clinical integration are crucial for real-world adoption. Optimizing biomarker panels and using AI trustworthily and ethically could enhance precision oncology, enabling early, tailored interventions to reduce mortality.
期刊介绍:
Cancers (ISSN 2072-6694) is an international, peer-reviewed open access journal on oncology. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.