Fatemeh Balouei, Christina de Rivera, Andrea Paradis, Bruno Stefanon, Stephanie Kelly, Noelle McCarthy, Paolo Mongillo
{"title":"Gut Microbiota Variation in Aging Dogs with Osteoarthritis.","authors":"Fatemeh Balouei, Christina de Rivera, Andrea Paradis, Bruno Stefanon, Stephanie Kelly, Noelle McCarthy, Paolo Mongillo","doi":"10.3390/ani15111619","DOIUrl":null,"url":null,"abstract":"<p><p>Gut microbiota composition plays a crucial role in host health and may be influenced by age and disease conditions. This study investigates the gut microbiota diversity of 175 dogs across three age groups (Junior (20-46 months, 43 dogs), Adult (47-92 months, 58 dogs), and Senior (93-168 months, 74 dogs), and examined the impact of osteoarthritis on microbial composition. Alpha diversity analysis using the Shannon and Chao1 indices were significant (<i>p</i> < 0.05) in Senior dogs Beta diversity analysis based on Bray-Curtis dissimilarity indices demonstrated substantial overlap in gut microbiota composition across age groups, with no significant clustering observed (<i>p</i> > 0.05). A second analysis compared the microbiota of 69 healthy dogs and 81 dogs affected by osteoarthritis (OA) in the three classes of age. No significant differences were shown for alpha diversity and beta diversity between healthy and OA dogs. This indicates that aging and osteoarthritis do not induce significant shifts in microbial beta diversity, although high inter-individual variability was noted. Linear Discriminant Analysis (LDA) Effect Size (LEfSe) analysis identified distinct bacterial taxa associated with different age groups. Linear Discriminant Analysis (LDA) Effect Size (LEfSe) analysis identified distinct bacterial taxa associated with different age groups. Junior dogs exhibited enrichment in <i>Blautia</i>, Erysipelotrichaceae, and <i>Clostridium</i>, while Adult dogs were characterized by higher abundances of <i>Prevotella</i>, <i>Streptococcus</i>, and Ruminococcaceae. Senior dogs had increased representation of <i>Prevotella</i> and <i>Ruminococcus</i>. In OA dogs, <i>Peptococcus</i>, <i>Peptostreptococcus</i>, Clostridiaceae, and <i>Coprobacillus</i> were significantly enriched in comparison to healthy dogs, suggesting potential microbiota shifts associated with osteoarthritis. Overall, these findings indicate that gut microbiota diversity varies across different life stages, specific bacterial taxa were differentially enriched in relation to age and OA. This study enhances our understanding of gut microbiota dynamics in dogs and provides insights into potential age- and disease-related microbial signatures.</p>","PeriodicalId":7955,"journal":{"name":"Animals","volume":"15 11","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12153520/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animals","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/ani15111619","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Gut microbiota composition plays a crucial role in host health and may be influenced by age and disease conditions. This study investigates the gut microbiota diversity of 175 dogs across three age groups (Junior (20-46 months, 43 dogs), Adult (47-92 months, 58 dogs), and Senior (93-168 months, 74 dogs), and examined the impact of osteoarthritis on microbial composition. Alpha diversity analysis using the Shannon and Chao1 indices were significant (p < 0.05) in Senior dogs Beta diversity analysis based on Bray-Curtis dissimilarity indices demonstrated substantial overlap in gut microbiota composition across age groups, with no significant clustering observed (p > 0.05). A second analysis compared the microbiota of 69 healthy dogs and 81 dogs affected by osteoarthritis (OA) in the three classes of age. No significant differences were shown for alpha diversity and beta diversity between healthy and OA dogs. This indicates that aging and osteoarthritis do not induce significant shifts in microbial beta diversity, although high inter-individual variability was noted. Linear Discriminant Analysis (LDA) Effect Size (LEfSe) analysis identified distinct bacterial taxa associated with different age groups. Linear Discriminant Analysis (LDA) Effect Size (LEfSe) analysis identified distinct bacterial taxa associated with different age groups. Junior dogs exhibited enrichment in Blautia, Erysipelotrichaceae, and Clostridium, while Adult dogs were characterized by higher abundances of Prevotella, Streptococcus, and Ruminococcaceae. Senior dogs had increased representation of Prevotella and Ruminococcus. In OA dogs, Peptococcus, Peptostreptococcus, Clostridiaceae, and Coprobacillus were significantly enriched in comparison to healthy dogs, suggesting potential microbiota shifts associated with osteoarthritis. Overall, these findings indicate that gut microbiota diversity varies across different life stages, specific bacterial taxa were differentially enriched in relation to age and OA. This study enhances our understanding of gut microbiota dynamics in dogs and provides insights into potential age- and disease-related microbial signatures.
AnimalsAgricultural and Biological Sciences-Animal Science and Zoology
CiteScore
4.90
自引率
16.70%
发文量
3015
审稿时长
20.52 days
期刊介绍:
Animals (ISSN 2076-2615) is an international and interdisciplinary scholarly open access journal. It publishes original research articles, reviews, communications, and short notes that are relevant to any field of study that involves animals, including zoology, ethnozoology, animal science, animal ethics and animal welfare. However, preference will be given to those articles that provide an understanding of animals within a larger context (i.e., the animals'' interactions with the outside world, including humans). There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental details and/or method of study, must be provided for research articles. Articles submitted that involve subjecting animals to unnecessary pain or suffering will not be accepted, and all articles must be submitted with the necessary ethical approval (please refer to the Ethical Guidelines for more information).