Abdallah E Abdallah, Omkulthom Al Kamaly, Esmail M El-Fakharany, Yousra A El-Maradny, Abdelaaty A Shahat, Mohamed S Alesawy, Ali Hammad, Mohamed Ayman El-Zahabi, Samiha A El-Sebaey, Mona S El-Zoghbi
{"title":"Quinazolinone based broad-spectrum antiviral molecules: design, synthesis, in silico studies and biological evaluation.","authors":"Abdallah E Abdallah, Omkulthom Al Kamaly, Esmail M El-Fakharany, Yousra A El-Maradny, Abdelaaty A Shahat, Mohamed S Alesawy, Ali Hammad, Mohamed Ayman El-Zahabi, Samiha A El-Sebaey, Mona S El-Zoghbi","doi":"10.1007/s11030-025-11237-z","DOIUrl":null,"url":null,"abstract":"<p><p>In an attempt to develop broad-spectrum antiviral agents, we designed non-nucleoside small molecules as deubiquitinating enzyme inhibitors. The newly developed candidates are based on the quinazolinone nucleus and have been biologically evaluated as antiviral agents against four viruses: adenovirus, HSV-1, coxsackievirus, and SARS-CoV-2. Additionally, activity against papain-like protease (PL<sup>pro</sup>), a DUB enzyme of SARS-CoV-2, was evaluated. Structure-activity association was established dependent on the obtained data. Regarding adenovirus, HSV-1, and coxsackievirus, most of the new candidates showed promising antiviral activity. Among them, compounds 8d and 8c have the highest potential, with IC<sub>50</sub> values reaching from 12.77 to 15.96 μg/mL and 16.71 to 19.58 μg/mL, respectively, compared to acyclovir's IC<sub>50</sub> of 3.45-15.97 μg/mL. However, 8c outperformed acyclovir in terms of selectivity index, with selectivity indices ranging from 19.04 to 22.31, whereas acyclovir's selectivity indices ranged from 4.77 to 22.10. While 8d had selectivity indices comparable to those of acyclovir. Interestingly, compound 8d revealed very potent activity against SARS-CoV-2, showing an IC<sub>50</sub> value of 0.948 μg/mL in comparison to IC<sub>50</sub> of 1.141 μg/mL for remdesivir. Additionally, 8d displayed a far better selectivity index than remdesivir. Furthermore, 8d showed promising inhibition of papain-like protease with an IC<sub>50</sub> of 5.056 μg/mL. In addition, the proposed binding modes and affinities of the new derivatives to papain-like protease were significant. Overall, the majority of such synthesized compounds, especially compound 8d, have shown strong antiviral activity and good safety profiles, making them promising candidates for future development in antiviral therapies.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Diversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11030-025-11237-z","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In an attempt to develop broad-spectrum antiviral agents, we designed non-nucleoside small molecules as deubiquitinating enzyme inhibitors. The newly developed candidates are based on the quinazolinone nucleus and have been biologically evaluated as antiviral agents against four viruses: adenovirus, HSV-1, coxsackievirus, and SARS-CoV-2. Additionally, activity against papain-like protease (PLpro), a DUB enzyme of SARS-CoV-2, was evaluated. Structure-activity association was established dependent on the obtained data. Regarding adenovirus, HSV-1, and coxsackievirus, most of the new candidates showed promising antiviral activity. Among them, compounds 8d and 8c have the highest potential, with IC50 values reaching from 12.77 to 15.96 μg/mL and 16.71 to 19.58 μg/mL, respectively, compared to acyclovir's IC50 of 3.45-15.97 μg/mL. However, 8c outperformed acyclovir in terms of selectivity index, with selectivity indices ranging from 19.04 to 22.31, whereas acyclovir's selectivity indices ranged from 4.77 to 22.10. While 8d had selectivity indices comparable to those of acyclovir. Interestingly, compound 8d revealed very potent activity against SARS-CoV-2, showing an IC50 value of 0.948 μg/mL in comparison to IC50 of 1.141 μg/mL for remdesivir. Additionally, 8d displayed a far better selectivity index than remdesivir. Furthermore, 8d showed promising inhibition of papain-like protease with an IC50 of 5.056 μg/mL. In addition, the proposed binding modes and affinities of the new derivatives to papain-like protease were significant. Overall, the majority of such synthesized compounds, especially compound 8d, have shown strong antiviral activity and good safety profiles, making them promising candidates for future development in antiviral therapies.
期刊介绍:
Molecular Diversity is a new publication forum for the rapid publication of refereed papers dedicated to describing the development, application and theory of molecular diversity and combinatorial chemistry in basic and applied research and drug discovery. The journal publishes both short and full papers, perspectives, news and reviews dealing with all aspects of the generation of molecular diversity, application of diversity for screening against alternative targets of all types (biological, biophysical, technological), analysis of results obtained and their application in various scientific disciplines/approaches including:
combinatorial chemistry and parallel synthesis;
small molecule libraries;
microwave synthesis;
flow synthesis;
fluorous synthesis;
diversity oriented synthesis (DOS);
nanoreactors;
click chemistry;
multiplex technologies;
fragment- and ligand-based design;
structure/function/SAR;
computational chemistry and molecular design;
chemoinformatics;
screening techniques and screening interfaces;
analytical and purification methods;
robotics, automation and miniaturization;
targeted libraries;
display libraries;
peptides and peptoids;
proteins;
oligonucleotides;
carbohydrates;
natural diversity;
new methods of library formulation and deconvolution;
directed evolution, origin of life and recombination;
search techniques, landscapes, random chemistry and more;