{"title":"Amino acids hydrophobic properties in proteins are derived from their atomic polarities","authors":"Juan Cedano, Enrique Querol, Angel Mozo-Villarías","doi":"10.1007/s00249-025-01764-w","DOIUrl":null,"url":null,"abstract":"<div><p>Knowledge of the hydrophobicity of amino acids is essential to understanding the structure and function of proteins. One of the most useful tools for this purpose has been the use of hydrophobicity scales. In these scales, each amino acid is attributed with a numerical value that characterizes its hydrophobic or hydrophilic behavior in a protein. These values depend on the particular methodologies used to obtain them. In the present work, we present a way to infer a hydrophobicity scale for all the amino acids from their partial atomic charge from the uniCHARMM force field. All amino acids are more or less soluble in water as they need to be easily bioavailable in the cell medium. It is during the folding process of a polypeptide chain, that an amino acid goes from a soluble state to be part of a folded protein within a cohesive hydrophobic core. In the present work, we have implemented a model and a formula that considers hydrophilicity as the ability of the atoms of amino acids to interact with water, being proportional to the accessibility to the solvent and its partial charge, depending on its sign. On the other hand, hydrophobicity is considered to be more intense the lower the charge on the atom and also proportional to the accessibility of the atom. This procedure improves the accuracy of protein hydrophobicity calculations down to the atomic level.</p></div>","PeriodicalId":548,"journal":{"name":"European Biophysics Journal","volume":"54 5","pages":"257 - 265"},"PeriodicalIF":2.4000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Biophysics Journal","FirstCategoryId":"2","ListUrlMain":"https://link.springer.com/article/10.1007/s00249-025-01764-w","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Knowledge of the hydrophobicity of amino acids is essential to understanding the structure and function of proteins. One of the most useful tools for this purpose has been the use of hydrophobicity scales. In these scales, each amino acid is attributed with a numerical value that characterizes its hydrophobic or hydrophilic behavior in a protein. These values depend on the particular methodologies used to obtain them. In the present work, we present a way to infer a hydrophobicity scale for all the amino acids from their partial atomic charge from the uniCHARMM force field. All amino acids are more or less soluble in water as they need to be easily bioavailable in the cell medium. It is during the folding process of a polypeptide chain, that an amino acid goes from a soluble state to be part of a folded protein within a cohesive hydrophobic core. In the present work, we have implemented a model and a formula that considers hydrophilicity as the ability of the atoms of amino acids to interact with water, being proportional to the accessibility to the solvent and its partial charge, depending on its sign. On the other hand, hydrophobicity is considered to be more intense the lower the charge on the atom and also proportional to the accessibility of the atom. This procedure improves the accuracy of protein hydrophobicity calculations down to the atomic level.
期刊介绍:
The journal publishes papers in the field of biophysics, which is defined as the study of biological phenomena by using physical methods and concepts. Original papers, reviews and Biophysics letters are published. The primary goal of this journal is to advance the understanding of biological structure and function by application of the principles of physical science, and by presenting the work in a biophysical context.
Papers employing a distinctively biophysical approach at all levels of biological organisation will be considered, as will both experimental and theoretical studies. The criteria for acceptance are scientific content, originality and relevance to biological systems of current interest and importance.
Principal areas of interest include:
- Structure and dynamics of biological macromolecules
- Membrane biophysics and ion channels
- Cell biophysics and organisation
- Macromolecular assemblies
- Biophysical methods and instrumentation
- Advanced microscopics
- System dynamics.