3D Printed Iron Pyrite via Meniscus Confinement: A Promising Material for Photovoltaic Solar Cells.

IF 3.3 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Netrapal Singh, Manoj Goswami, Komal Sharma, Mohammad Ashiq, Santosh Sridhar Mysore, Surender Kumar
{"title":"3D Printed Iron Pyrite via Meniscus Confinement: A Promising Material for Photovoltaic Solar Cells.","authors":"Netrapal Singh, Manoj Goswami, Komal Sharma, Mohammad Ashiq, Santosh Sridhar Mysore, Surender Kumar","doi":"10.1002/asia.202401864","DOIUrl":null,"url":null,"abstract":"<p><p>The meniscus-confined electrochemical 3D printing (MC-E3DP) process has emerged as a novel approach for fabricating sub-micron complex structures through localized electrochemical deposition from salt solutions of desired materials. This study reports, for the first time, the MC-E3DP fabrication of iron oxide (Fe<sub>3</sub>O<sub>4</sub>) thin films on indium tin oxide (ITO)-coated glass substrates. The Fe<sub>3</sub>O<sub>4</sub> films are characterized using XRD, Raman spectroscopy, and UV-vis pectroscopy, confirming phase purity. Subsequently, the Fe<sub>3</sub>O<sub>4</sub> thin films are subjected to sulfurization under varying conditions to synthesize iron pyrite (FeS<sub>2</sub>) thin films, a promising solar absorber material for photovoltaic applications. The sulfurized FeS<sub>2</sub> thin films are analyzed for phase purity using XRD, XPS, and Raman spectroscopy, while FESEM was employed to study their morphology. UV-vis-NIR spectroscopy reveals high absorption coefficients (∼10<sup>5</sup> cm<sup>-1</sup> for wavelengths below 700 nm) and indirect bandgaps ranging from 0.78 to 0.86 eV. All films exhibited n-type conductivity with a charge carrier density of ∼10<sup>19</sup> cm<sup>-3</sup>. Photoelectrochemical studies demonstrated a stable photocurrent response, indicating their suitability for solar cell applications. The MC-E3DP process offers exceptional control over structure and growth, making it a promising technique for creating device architectures tailored for specific applications.</p>","PeriodicalId":145,"journal":{"name":"Chemistry - An Asian Journal","volume":" ","pages":"e01864"},"PeriodicalIF":3.3000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - An Asian Journal","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1002/asia.202401864","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The meniscus-confined electrochemical 3D printing (MC-E3DP) process has emerged as a novel approach for fabricating sub-micron complex structures through localized electrochemical deposition from salt solutions of desired materials. This study reports, for the first time, the MC-E3DP fabrication of iron oxide (Fe3O4) thin films on indium tin oxide (ITO)-coated glass substrates. The Fe3O4 films are characterized using XRD, Raman spectroscopy, and UV-vis pectroscopy, confirming phase purity. Subsequently, the Fe3O4 thin films are subjected to sulfurization under varying conditions to synthesize iron pyrite (FeS2) thin films, a promising solar absorber material for photovoltaic applications. The sulfurized FeS2 thin films are analyzed for phase purity using XRD, XPS, and Raman spectroscopy, while FESEM was employed to study their morphology. UV-vis-NIR spectroscopy reveals high absorption coefficients (∼105 cm-1 for wavelengths below 700 nm) and indirect bandgaps ranging from 0.78 to 0.86 eV. All films exhibited n-type conductivity with a charge carrier density of ∼1019 cm-3. Photoelectrochemical studies demonstrated a stable photocurrent response, indicating their suitability for solar cell applications. The MC-E3DP process offers exceptional control over structure and growth, making it a promising technique for creating device architectures tailored for specific applications.

通过半月板约束的3D打印黄铁矿:一种有前途的光伏太阳能电池材料。
半月板受限电化学3D打印(MC-E3DP)工艺已经成为一种通过所需材料的盐溶液进行局部电化学沉积来制造亚微米复杂结构的新方法。本研究首次报道了MC-E3DP在氧化铟锡(ITO)镀膜玻璃基板上制备氧化铁(Fe3O4)薄膜。利用XRD、拉曼光谱和紫外可见光谱对Fe3O4薄膜进行了表征,确定了相纯度。随后,将Fe3O4薄膜在不同条件下进行硫化,合成黄铁矿(FeS2)薄膜,这是一种很有前途的光伏太阳能吸收材料。采用XRD、XPS和拉曼光谱对硫化后的FeS2薄膜进行了相纯度分析,并用FESEM对其形貌进行了研究。紫外可见近红外光谱显示高吸收系数(~ 105 cm-1波长低于700 nm)和间接带隙范围为0.78至0.86 eV。所有薄膜都具有n型电导率,载流子密度为~ 1019 cm-3。光电化学研究证明了稳定的光电流响应,表明它们适合于太阳能电池的应用。MC-E3DP工艺提供了对结构和增长的卓越控制,使其成为为特定应用量身定制的设备架构的有前途的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemistry - An Asian Journal
Chemistry - An Asian Journal 化学-化学综合
CiteScore
7.00
自引率
2.40%
发文量
535
审稿时长
1.3 months
期刊介绍: Chemistry—An Asian Journal is an international high-impact journal for chemistry in its broadest sense. The journal covers all aspects of chemistry from biochemistry through organic and inorganic chemistry to physical chemistry, including interdisciplinary topics. Chemistry—An Asian Journal publishes Full Papers, Communications, and Focus Reviews. A professional editorial team headed by Dr. Theresa Kueckmann and an Editorial Board (headed by Professor Susumu Kitagawa) ensure the highest quality of the peer-review process, the contents and the production of the journal. Chemistry—An Asian Journal is published on behalf of the Asian Chemical Editorial Society (ACES), an association of numerous Asian chemical societies, and supported by the Gesellschaft Deutscher Chemiker (GDCh, German Chemical Society), ChemPubSoc Europe, and the Federation of Asian Chemical Societies (FACS).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信