Anh Tuan Ngo, David Aguilà, João Pedro Vale, Semih Sevim, Michele Mattera, Jordi Díaz-Marcos, Ramon Pons, Guillem Aromí, Bumjin Jang, Salvador Pané, Tiago Sotto Mayor, Mario Palacios-Corella, Josep Puigmartí-Luis
{"title":"On-the-Fly Synthesis of Freestanding Spin-Crossover Architectures With Tunable Magnetic Properties.","authors":"Anh Tuan Ngo, David Aguilà, João Pedro Vale, Semih Sevim, Michele Mattera, Jordi Díaz-Marcos, Ramon Pons, Guillem Aromí, Bumjin Jang, Salvador Pané, Tiago Sotto Mayor, Mario Palacios-Corella, Josep Puigmartí-Luis","doi":"10.1002/adma.202420492","DOIUrl":null,"url":null,"abstract":"<p><p>Spin-crossover (SCO) molecular-based switches have shown promise across a range of applications since their discovery, including sensing, information storage, actuators, and displays. Yet limited processability remains a barrier to their real-world implementation, as traditional methods for integrating SCO materials into polymer matrices are often complex, expensive, and prone to producing uneven material distributions. Herein, we demonstrate how 3D flow-focusing chemistry enables unprecedented control for the direct fabrication of SCO composite materials, addressing key challenges in processability, scalability, and cost. By using a 3D coaxial flow-focusing microfluidic device, we simultaneously synthesize [Fe(Htrz)<sub>2</sub>(trz)](BF<sub>4</sub>) and achieve its homogeneous incorporation into alginate fibers in a continuous manner. The device's versatility allows for precise manipulation of the reaction-diffusion (RD) zone, resulting in SCO composite fibers with tunable physicochemical and magnetic properties. Additionally, we demonstrate the ability to isolate these fibers as freestanding architectures and highlight the potential for printing them with defined shapes. Finally, we show that the 3D control of the RD zone granted by continuous flow microfluidic devices offers precise spatiotemporal control over the distribution of SCO complexes within the fibers, effectively encoding SCO materials into them. SCO-encoded fibers can seamlessly combine adaptability and functionality, offering innovative solutions for application-specific customization.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":" ","pages":"e2420492"},"PeriodicalIF":27.4000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202420492","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Spin-crossover (SCO) molecular-based switches have shown promise across a range of applications since their discovery, including sensing, information storage, actuators, and displays. Yet limited processability remains a barrier to their real-world implementation, as traditional methods for integrating SCO materials into polymer matrices are often complex, expensive, and prone to producing uneven material distributions. Herein, we demonstrate how 3D flow-focusing chemistry enables unprecedented control for the direct fabrication of SCO composite materials, addressing key challenges in processability, scalability, and cost. By using a 3D coaxial flow-focusing microfluidic device, we simultaneously synthesize [Fe(Htrz)2(trz)](BF4) and achieve its homogeneous incorporation into alginate fibers in a continuous manner. The device's versatility allows for precise manipulation of the reaction-diffusion (RD) zone, resulting in SCO composite fibers with tunable physicochemical and magnetic properties. Additionally, we demonstrate the ability to isolate these fibers as freestanding architectures and highlight the potential for printing them with defined shapes. Finally, we show that the 3D control of the RD zone granted by continuous flow microfluidic devices offers precise spatiotemporal control over the distribution of SCO complexes within the fibers, effectively encoding SCO materials into them. SCO-encoded fibers can seamlessly combine adaptability and functionality, offering innovative solutions for application-specific customization.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.